Skip to main content
Log in

Antagonistic activity of Aspergillus versicolor against Macrophomina phaseolina

  • Fungal and Bacterial Physiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The present study was carried out to evaluate the antagonistic efficacy of Aspergillus versicolor against the soil and seed inhibiting destructive plant pathogen Macrophomina phaseolina. The tested antagonist was confirmed by rDNA sequencing of ITS and β-tubulin genes with respective accession numbers MN719083 and MN736397. In dual culture bioassays, A. versicolor showed potent antagonist activity and reduced the pathogen’s growth by 60% over control. To understand the mechanism of antagonistic fungus, DNA of the pathogenic fungus was incubated in secondary metabolites produced by the A. versicolor for 24 and 48 h. After 48 h, metabolites of A. versicolor fully degraded the DNA of M. phaseolina. Moreover, for the identification of bioactive compounds, the chloroform and ethyl acetate fractions of A. versicolor culture filtrates were subjected to GC–MS analysis. A total of 10 compounds were identified in each of the two fractions. Among these, chondrillasterol (37.43%) followed by 1,2-benzedicarboxylic acid, diisooctyl ester (25.93%), decane (16.63%), 9,12-octadecadienoic acid (Z,Z)- (13.32%), stigmasterol (11.16%), undecane (10.93%), cis-1-chloro-9-octadecene (8.66%), benzene, 1,3,5-trimethyl (8.46%), and hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl) ethyl ester (8.13%) were the major compounds. Some of the identified compounds are known to possess strong antifungal, antibacterial, nematicidal, and antioxidant properties. The present study concludes that A. versicolor is an effective antagonist against M. phaseolina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

© program. The phylogenetic tree was constructed using the neighbor-joining method in MEGA x version 10.1

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data may be made freely available to readers.

Code availability

Not applicable.

References

  1. Ouoba A, Sawadogo N, Ouedraogo MH, N, kangre H, Ngolo M, Konate EP, et al (2019) Phenotyping bambara groundnut landraces for resistance to Macrophomina phaseolina (Tassi) Goidnich. Int J Agric Biol 21:547–552. https://www.researchgate.net/publication/330562995

    CAS  Google Scholar 

  2. Mazzola M, Agostini A, Cohen MF (2017) Incorporation of brassica seed meal soil amendment and wheat cultivation for control of Macrophomina phaseolina in strawberry. Eur J Plant Pathol 149:57–71. https://doi.org/10.1007/s10658-017-1166-0

    Article  CAS  Google Scholar 

  3. Bakr RA, Hamad AS (2019) Survey varietal reaction and chemical control of strawberry charcoal rot in Egypt. Pak J Phytopathol 31:55–66. https://doi.org/10.33866/phytopathol.031.01.0500

    Article  Google Scholar 

  4. Li D, Suh S (2019) Health risks of chemicals in consumer products: a review. Environ Int 123:580–587. https://doi.org/10.1016/j.envint.2018.12.033

    Article  CAS  PubMed  Google Scholar 

  5. Akhtar R, Javaid A (2018) Biological management of basal rot of onion by Trichoderma harzianum and Withania somnifera. Planta Danin 36:e017170507. https://doi.org/10.1590/s0100-83582018360100009

    Article  Google Scholar 

  6. Keeffe E, Hughes H, McLoughlin P, Tan SP, Mcarthy N (2019) Methods of analysis for the in vitro and in vivo determination of the fungicidal activity of seaweeds: a mini review. J Appl Phycol 32:1–18. https://doi.org/10.1007/s10811-019-01832-7

    Article  Google Scholar 

  7. Sridharan AP, Sugitha T, Karthikeyan G, Nakkeeran S, Sivakumar U (2021) Metabolites of Trichoderma longibrachiatum EF5 inhibits soil borne pathogen Macrophomina phaseolina by triggering amino sugar metabolism. Microb Pathog 150:104714. https://doi.org/10.1016/j.micpath.2020.104714

    Article  CAS  PubMed  Google Scholar 

  8. Ting ASY, Jioe E (2016) In vitro assessment of antifungal activities of antagonistic fungi towards pathogenic Ganoderma boninense under metal stress. Biol Control 96:57–63. https://doi.org/10.1016/j.biocontrol.2016.02.002

    Article  CAS  Google Scholar 

  9. Tiwari V, Singh R, Pandey AK (2017) Efficacy of some antagonistic fungi and botanicals against Fusarium solani causing damping-off disease in eggplant (Solanum melongena L). J Appl Biosci 43:47–56. https://www.researchgate.net/profile/Ak-Pandey/publication/326736022

    Google Scholar 

  10. Khan IH, Javaid A (2022) DNA cleavage of the fungal pathogen and production of antifungal compounds are the possible mechanisms of action of biocontrol agent Penicillium italicum against Macrophomina phaseolina. Mycologia 114(1):24–34. https://doi.org/10.1080/00275514.2021.1990627

    Article  CAS  Google Scholar 

  11. Rizvi R, Mahmood I, Ansari S (2018) Interaction between plant symbionts, bio-organic waste and antagonistic fungi in the management of Meloidogyne incognita infecting chickpea. J Saudi Soci Agric Sci 17:424–434. https://doi.org/10.1016/j.jssas.2016.10.002

    Article  Google Scholar 

  12. El-Debaiky SA (2017) Antagonistic studies and hyphal interactions of the new antagonist Aspergillus piperis against some phytopathogenic fungi in vitro in comparison with Trichoderma harzianum. Microb Pathog 113:135–143. https://doi.org/10.1016/j.micpath.2017.10.041

    Article  PubMed  Google Scholar 

  13. Jayaprakashvel M, Chitra C, Mathivanan N (2019) Metabolites of plant growth-promoting rhizobacteria for the management of soilborne pathogenic fungi in crops Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms Springer pp 293–315. https://link.springer.com/chapter/https://doi.org/10.1007/978-981-13-5862-3_15

  14. Chigozie VU, Okezie MU, Ajaegbu EE, Okoye FB, Esimone CO (2022) Bioactivities and HPLC analysis of secondary metabolites of a morphologically identified endophytic Aspergillus fungus isolated from Mangifera indica. Nat Prod Res. https://doi.org/10.1080/14786419.2021.2021517

    Article  Google Scholar 

  15. Sun Y, Liu J, Li L, Gong C, Wang S, Yang F et al (2018) New butenolide derivatives from the marine sponge-derived fungus Aspergillus terreus. Bioorg Med Chem Lett 28:315–318. https://doi.org/10.1016/j.bmcl.2017.12.049

    Article  CAS  PubMed  Google Scholar 

  16. Wu CJ, Cui X, Xiong B, Yang MS, Zhang YX, Liu XM (2019) Terretonin D1, a new meroterpenoid from marine-derived Aspergillus terreus ML-44. Nat Prod Res 33:2262–2265. https://doi.org/10.1080/14786419.2018.1493583

    Article  CAS  PubMed  Google Scholar 

  17. Ding L, Xu P, Li T, Liao X, He S, Xu S (2019) Asperfurandiones A and B, two antifungal furandione analogs from a marine-derived fungus Aspergillus versicolor. Nat Prod Res 33:3404–3408. https://doi.org/10.1080/14786419.2018.1480622

    Article  CAS  PubMed  Google Scholar 

  18. Landum MC, do Rosario FM, Alho J, Garcia R, Cabrita MJ, Rei F et al (2016) Antagonistic activity of fungi of Olea europaea L. against Colletotrichum acutatum. Microb Res 183:100–108. https://doi.org/10.1016/j.micres.2015.12.001

    Article  Google Scholar 

  19. Shemshura ON, Bekmakhanova NE, Mazunina MN, Meyer SL, Rice CP, Masler EP (2016) Isolation and identification of nematode-antagonistic compounds from the fungus Aspergillus candidus. FEMS Microbiol Lett 363:1–9. https://doi.org/10.1093/femsle/fnw026

    Article  CAS  Google Scholar 

  20. Khan IH, Javaid A (2021) In vitro screening of Aspergillus spp. for their biocontrol potential against Macrophomina phaseolina. J Plant Pathol 103(4):1195–1205. https://doi.org/10.1007/s42161-021-00865-7

  21. Nakayama T (2017) Biocontrol of powdery scab of potato by seed tuber application of an antagonistic fungus Aspergillus versicolor isolated from potato roots. J Gen Plant Pathol 83:253–263. https://doi.org/10.1007/s10327-017-0716-9

  22. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. https://scholar.google.com.pk/scholar Focus 12:39–40

    Google Scholar 

  23. Rini CR, Sulochana KK (2008) Usefulness of Trichoderma and Pseudomonas against Rhizoctonia solani and Fusarium oxysporum infecting tomato. J Trop Agric 45:21–28. http://jtropag.kau.in/index.php/ojs2/article/view/168

  24. Khan IH, Javaid A (2020) Comparative antifungal potential of stem extracts of four quinoa varieties against Macrophomina phaseolina. Int J Agric Biol 24:441–446. http://www.fspublishers.org/published_papers/870_doi%2015.1457%20IJAB-20-0211%20(6).pdf

  25. Hosen MD, Shamsi S (2019) In vitro antagonism of Trichoderma viride and Aspergillus spp. against a pathogenic seed borne fungus of sesame. J Bangladesh Acad Sci 43:17–23. https://doi.org/10.3329/jbas.v43i1.42229

    Article  Google Scholar 

  26. Dong M, Xiao G, Xu F, Hu W, Li Q, Chen J et al (2019) Cellulase production by Aspergillus fumigatus MS13 1 mutant generated by heavy ion mutagenesis and its efficient saccharification of pretreated sweet sorghum straw. Process Biochem 84:22–29. https://doi.org/10.1016/j.procbio.2019.06.006

    Article  CAS  Google Scholar 

  27. Patil VM, Patole KR, Paprikar MS, Rajput JC (2017) Biological control of brinjal wilt caused by Fusarium oxysporum f. sp. melongenae using soluble powder formulation of Aspergillus niger. Int J Adv Res Biol Sci 4:66–71. https://ijarbs.com/pdfcopy/nov2017/ijarbs9.pdf

  28. Boughalleb-Hamdi N, Salem IB, Hamdi M (2018) Evaluation of the efficiency of Trichoderma, Penicillium and Aspergillus species as biological control agents against four soil-borne fungi of melon and watermelon. Egypt J Biol Pest Co 28:25–37. https://doi.org/10.1186/s41938-017-0010-3

    Article  Google Scholar 

  29. Elamathi P, Madhanraj P, Panneerselvam A, Prabakaram P (2017) Antagonistic activity of potential soil fungi against Bipolaris oryzae. Int J Curr Microbiol Appl Sci 6:750–754. https://doi.org/10.20546/ijcmas.2017.601.089

  30. Waqas M, Khan AL, Hamayun M, Shahzad R, Kang S, Kim J et al (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280–287. https://doi.org/10.1080/17429145.2015.1079743

    Article  CAS  Google Scholar 

  31. Khonglah D, Kayang H (2018) Antagonism of indigenous fungal isolates against Botrytis cineria the causal of gray mold disease of tomato (Solanum lycopersicum L.). Int J Curr Res Life Sci 7:806–812. http://www.journalijcrls.com/sites/default/files/issues-pdf/00711.pdf

    Google Scholar 

  32. Mary FP, Giri SR (2017) Screening of biocontrol agent against tomato wilt disease. Int J Bot Stud 2:170–175. https://www.researchgate.net/publication/331087723

    Google Scholar 

  33. Verma A, Johri BN, Prakash A (2014) Antagonistic evaluation of bioactive metabolites from endophytic fungus Aspergillus flavipes KF671231. J Mycol 14:e371218. https://doi.org/10.1155/2014/371218

    Article  Google Scholar 

  34. Dashamiri S, Ghaedi M, Salehi A, Jannesar R (2018) Antibacterial anti-fungal and E. coli DNA cleavage of Euphorbia prostrata and Pelargonium graveolens extract and their combination with novel nanoparticles. Braz J Pharm Sci 54:e177724. https://doi.org/10.1590/s2175-97902018000417724

    Article  CAS  Google Scholar 

  35. Khan IH, Javaid A (2020) In vitro biocontrol potential of Trichoderma pseudokoningii against Macrophomina phaseolina. Int J Agric Biol 24(4):730–736

    CAS  Google Scholar 

  36. Kavitha R, Mohideen AU (2018) Determination of phytochemicals in Gloriosa superba flower extract using gas gromatography and mass spectroscopic technique. J Pharm Phytochem 7:349–352. https://www.phytojournal.com

    CAS  Google Scholar 

  37. Jeong-Ho L, Yang H, Lee H, Hong S (2008) Chemical composition and antimicrobial activity of essential oil from cones of Pinus koraiensis. J Microbiol Biotechnol 18:497–502. https://www.koreascience.or.kr/article/JAKO200832642389608

  38. Wang W, Zhang N, Chanda W, Liu M, Din SR, Dlao Y et al (2018) Antibacterial and anti-biofilm activity of the lipid extract from Matidis ootheca on Pseudomonas aeruginosa. J Zhejiang Univ Sci B 19:364–371. https://link.springer.com/article/https://doi.org/10.1631/jzus.B1700356

  39. Mohammed SB, Azhari NH, Mashitah YM, Abdurahman NH, Mazza AS (2015) In vitro antimicrobial activity and GC-MS analysis of medicinal plant Swietenia macrophylla King. J Chem Pharm Res 7:519–524. https://www.researchgate.net/publication/315652183

  40. Shareef HK, Muhammed HJ, Hussein HM, Hameed IH (2016) Antibacterial effect of ginger (Zingiber officinale) roscoe and bioactive chemical analysis using gas chromatography mass spectrum. Orient J Chem 32:817–837. https://www.researchgate.net/publication/303531356

    Article  CAS  Google Scholar 

  41. Sudha T, Chidambarampillai S, Mohan VR (2013) GC-MS analysis of bioactive components of aerial parts of Fluggea leucopyrus Willd. (Euphorbiaceae). J Appl Pharma Sci 3:126–130. https://doi.org/10.7324/JAPS.2013.3524

    Article  CAS  Google Scholar 

  42. Arora S, Meena S (2017) GC-MS profiling of Ceropegia bulbosa Roxb Var bulbosa an endangered plant from thar desert Rajasthan. Pharm Innov J 6:568–573. https://www.thepharmajournal.com

    CAS  Google Scholar 

  43. Arora S, Kumar G (2018) Phytochemical screening of root stem and leaves of Cenchrus biflorus Roxb. J Pharm Phytochem 7:1445–1450. https://www.phytojournal.com

  44. Al-Marzoqi AH, Hameed IH, Idan SA (2015) Analysis of bioactive chemical components of two medicinal plants (Coriandrum sativum and Melia azedarach) leaves using gas chromatography-mass spectrometry (GC-MS). Afr J Biotechnol 14:2812–2830. https://doi.org/10.5897/AJB2015.14956

    Article  Google Scholar 

  45. Adomi PO (2017) Investigation of bioactive phytochemical compounds from aqueous ethanol extracts of leaves of Phyllanthus amarus Sachum and Thonn by Gas charomatography and Mass spectrometry (GC-MS). Pecific J Sci Technol 18:284–291. http://www.akamaiuniversity.us/PJST18_2_284.pdf

    Google Scholar 

  46. Legua P, Domenech A, Martinez JJ, Sanchez-Rodriguez L, Hernandez F, Carbonell-Barrachina AA et al (2017) Bioactive and volatile compounds in sweet cherry cultivars. J Food Nutr Res 5:844–851. http://article.foodnutritionresearch.com/pdf/jfnr-5-11-8.pdf

    Article  CAS  Google Scholar 

  47. Okla MK, Alamri SA, Salem MZM, Ali HM, Behiry SI, Nasser RA et al (2019) Yield phytochemical constituents and antibacterial activity of essential oils from the leaves/twigs branches branch wood and branch bark of sour orange (Citrus aurantium L). Processes 7:362–376. https://doi.org/10.3390/pr7060363

    Article  CAS  Google Scholar 

  48. Anburaj G, Marimuthu M, Rajasudha V, Manikandan R (2016) Phytochemical screening and GC-MS analysis of ethanolic extract of Tecoma stans Family: Bignoniaceae) yellow bell flowers. J Pharm Phytochem 5:172–175. https://www.phytojournal.com/archives/2016/vol5issue6/PartC/5-5-44-992.pdf

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

IHK conducted experiments and wrote the manuscript. AJ designed research, analyzed data statistically, and helped out in paper writing. Both authors read and approved the manuscript.

Corresponding author

Correspondence to Iqra Haider Khan.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Responsible Editor: Derlene Attili Agellis

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I.H., Javaid, A. Antagonistic activity of Aspergillus versicolor against Macrophomina phaseolina. Braz J Microbiol 53, 1613–1621 (2022). https://doi.org/10.1007/s42770-022-00782-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00782-6

Keywords

Navigation