Skip to main content

Advertisement

Log in

Diversity and antimicrobial potential of the culturable rhizobacteria from medicinal plant Baccharis trimera Less D.C.

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Plant microbiota is usually enriched with bacteria producers of secondary metabolites and represents a valuable source of novel species and compounds. Here, we analyzed the diversity of culturable root-associated bacteria of the medicinal native plant Baccharis trimera (Carqueja) and screened promising isolates for their antimicrobial properties. The rhizobacteria were isolated from the endosphere and rhizosphere of B. trimera from Ponta Grossa and Ortigueira localities and identified by sequencing and restriction analysis of the 16S rDNA. The most promising isolates were screened for antifungal activities and the production of siderophores and biosurfactants. B. trimera presented a diverse community of rhizobacteria, constituted of 26 families and 41 genera, with a predominance of Streptomyces and Bacillus genera, followed by Paenibacillus, Staphylococcus, Methylobacterium, Rhizobium, Tardiphaga, Paraburkholderia, Burkholderia, and Pseudomonas. The more abundant genera were represented by different species, showing a high diversity of the microbiota associated to B. trimera. Some of these isolates potentially represent novel species and deserve further examination. The communities were influenced by both the edaphic properties of the sampling locations and the plant niches. Approximately one-third of the rhizobacteria exhibited antifungal activity against Sclerotinia sclerotiorum and Colletotrichum gloeosporioides, and a high proportion of isolates produced siderophores (25%) and biosurfactants (42%). The most promising isolates were members of the Streptomyces genus. The survey of B. trimera returned a diverse community of culturable rhizobacteria and identified potential candidates for the development of plant growth-promoting and protection products, reinforcing the need for more comprehensive investigations of the microbiota of Brazilian native plants and habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Compant S, Vacher C (2019) Sources, niches and routes of colonization by beneficial bacterial endophytes. In: Schouten A, ed. Endophyte Biotechnology: Potential for Agriculture and Pharmacology CABI. 32–41. https://doi.org/10.1079/9781786399427.0032

  2. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486. https://doi.org/10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  3. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64(1):807–838. https://doi.org/10.1146/annurev-arplant-050312-120106

    Article  CAS  PubMed  Google Scholar 

  4. Bakker PAHM, Berendsen RL, Doornbos RF, Wintermans PCA, Pieterse CMJ (2013) The rhizosphere revisited: Root microbiomics. Front Plant Sci 4(5). https://doi.org/10.3389/fpls.2013.00165

  5. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68(1):1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x

    Article  CAS  PubMed  Google Scholar 

  6. Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37. https://doi.org/10.1016/j.jare.2019.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37. https://doi.org/10.1016/j.copbio.2013.09.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7(SEP):1538. https://doi.org/10.3389/fmicb.2016.01538

  9. Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90(6):575–587. https://doi.org/10.1007/s11103-015-0417-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Garg G, Kumar S, Bhati S (2021) Siderophore in plant nutritional management: role of endophytic bacteria. 315–329. https://doi.org/10.1007/978-3-030-65447-4_14

  11. Fadiji AE, Babalola OO (2020) Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects. Front Bioeng Biotech 8:467. https://doi.org/10.3389/FBIOE.2020.00467/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2015) Microbial siderophores and their potential applications: A review. Environ Sci Pollut Res 23(5):3984–3999. https://doi.org/10.1007/S11356-015-4294-0

  13. Rani M, Weadge JT, Jabaji S (2020) Isolation and characterization of biosurfactant-producing bacteria from oil well batteries with antimicrobial activities against food-borne and plant pathogens. Front Microbiol 11:64. https://doi.org/10.3389/FMICB.2020.00064/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  14. Primo ED, Ruiz F, Masciarelli O, Giordano W (2015) Biofilm formation and biosurfactant activity in plant-associated bacteria. 337–349. https://doi.org/10.1007/978-3-319-24654-3_13

  15. D’aes J, de Maeyer K, Pauwelyn E, Höfte M (2010) Biosurfactants in plant–Pseudomonas interactions and their importance to biocontrol. Environ Microbiol Rep 2(3):359–372. https://doi.org/10.1111/J.1758-2229.2009.00104.X

    Article  PubMed  Google Scholar 

  16. Singh P, Rale V (2022) Applications of microbial biosurfactants in biocontrol management. Biocontrol Mechanisms of Endophytic Microorganisms. 217–237. https://doi.org/10.1016/B978-0-323-88478-5.00009-2

  17. Goswami M, Deka S (2021) Biosurfactant-mediated biocontrol of pathogenic microbes of crop plants. Biosurfactants for a Sustainable Future. 491–509. https://doi.org/10.1002/9781119671022.CH22

  18. Naughton PJ, Marchant R, Naughton V, Banat IM (2019) Microbial biosurfactants: current trends and applications in agricultural and biomedical industries. J Appl Microbiol 127(1):12–28. https://doi.org/10.1111/JAM.14243

    Article  CAS  PubMed  Google Scholar 

  19. Chandrakar S, Gupta AK (2015) Antibiotic potential of endophytic actinomycetes of medicinal herbs against human pathogenic bacteria. Proceed Nat Academy Sci India Sect B Bio Sci 87(3):905–915. https://doi.org/10.1007/S40011-015-0668-9

  20. Elsebai MF, Tejesvi MV, Pirttilä AM (2014) Endophytes as a novel source of bioactive new structures. Adv Endophytic Res 191–202. https://doi.org/10.1007/978-81-322-1575-2_10

  21. Barman D, Bhattacharjee K (2019) Endophytic bacteria associated with medicinal plants: the treasure trove of antimicrobial compounds. 153–187. https://doi.org/10.1007/978-981-13-9566-6_8

  22. Mohamad OAA, Ma JB, Liu YH, Li L, Hatab S, Li WJ (2019) Medicinal plant-associated microbes as a source of protection and production of crops. 239–263. https://doi.org/10.1007/978-981-13-9566-6_10

  23. Golinska P, Wypij M, Agarkar G, Rathod D, Dahm H, Rai M (2015) Endophytic actinobacteria of medicinal plants: diversity and bioactivity. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 108(2):267–289. https://doi.org/10.1007/s10482-015-0502-7

    Article  Google Scholar 

  24. Viaene T, Langendries S, Beirinckx S, Maes M, Goormachtig S (2016) Streptomyces as a plant’s best friend? FEMS Microbiol Ecol 92(8). https://doi.org/10.1093/femsec/fiw119

  25. Dutta D, Puzari KC, Gogoi R, Dutta P (2014) Endophytes: Exploitation as a tool in plant protection. Braz Arch Biol Technol 57(5):621–629. https://doi.org/10.1590/S1516-8913201402043

    Article  Google Scholar 

  26. Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Molecular Sci 19(4):952. https://doi.org/10.3390/ijms19040952

  27. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502. https://doi.org/10.1128/MMBR.67.4.491-502.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Savi DC, Aluizio R, Glienke C (2019) Brazilian plants: an unexplored source of endophytes as producers of active metabolites. Planta Med 85(08):619–636. https://doi.org/10.1055/a-0847-1532

    Article  CAS  PubMed  Google Scholar 

  29. Silveira Rabelo AC, Caldeira CD (2018) A review of biological and pharmacological activities of Baccharis trimera. Chem Biol Interact 296:65–75. https://doi.org/10.1016/j.cbi.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  30. Oliveira EA (2012) O Parque Nacional Dos Campos Gerais: Processo de Criação. Universidade Federal do Paraná, Caracterização Ambiental e Proposta de Priorização de Áreas Para Regularização Fundiária

    Google Scholar 

  31. Paulitsch F, Klepa MS, da Silva AR et al (2019) Phylogenetic diversity of rhizobia nodulating native Mimosa gymnas grown in a South Brazilian ecotone. Mol Biol Rep 46(1):529–540. https://doi.org/10.1007/s11033-018-4506-z

    Article  CAS  PubMed  Google Scholar 

  32. Paulitsch F, Dall’Agnol RF, Delamuta JRM, Ribeiro RA, da Silva Batista JS, Hungria M (2019) Paraburkholderia guartelaensis sp. nov., a nitrogen-fixing species isolated from nodules of Mimosa gymnas in an ecotone considered as a hotspot of biodiversity in Brazil. Arch Microbiol 201(10):1435–1446. https://doi.org/10.1007/s00203-019-01714-z

  33. Vieira MLA, Johann S, Hughes FM, Rosa CA, Rosa LH (2014) The diversity and antimicrobial activity of endophytic fungi associated with medicinal plant Baccharis trimera (Asteraceae) from the Brazilian savannah. Can J Microbiol 60(12):847–856. https://doi.org/10.1139/cjm-2014-0449

    Article  CAS  PubMed  Google Scholar 

  34. Silva FC ed. (2009) Manual de Análises Químicas de Solos, Plantas e Fertilizantes. 2nd ed. Embrapa Informação Tecnológica

  35. Schulz B, Wanke U, Draeger S, Aust HJ (1993) Endophytes from herbaceous plants and shrubs: effectiveness of surface sterilization methods. Mycol Res 97(12):1447–1450. https://doi.org/10.1016/S0953-7562(09)80215-3

    Article  Google Scholar 

  36. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water downloaded from. Appl Environ Microbiol 49(1):1–7. https://doi.org/10.1128/aem.49.1.1-7.1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual. 3rd ed. CSHL press

  38. Weisburg WG, Barns SM, Pellettier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703

    Article  CAS  Google Scholar 

  39. Sneath PHA, Sokal RR ed. (1973) Numerical Taxonomy. The principles and practice of numerical classificationFreeman and Company

  40. Hall TA (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic Acids Symposium Series41:95–98

  41. Dereeper A, Guignon V, Blanc G et al (2008) Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36(suppl_2):W465-W469. https://doi.org/10.1093/NAR/GKN180

  42. Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/NAR/GKH340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552. https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A026334

    Article  CAS  PubMed  Google Scholar 

  44. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704. https://doi.org/10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  45. Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55(4):539–552. https://doi.org/10.1080/10635150600755453

    Article  PubMed  Google Scholar 

  46. Chevenet F, Brun C, Bañuls AL, Jacq B, Christen R (2006) TreeDyn: Towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7(1):1–9. https://doi.org/10.1186/1471-2105-7-439/FIGURES/4

    Article  Google Scholar 

  47. Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular evolutionary genetics analysis Version 11. Mol Biol Evol 38(7):3022–3027. https://doi.org/10.1093/MOLBEV/MSAB120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hammer Ø, Harper DAT, Ryan PD (2001) Past: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9

    Google Scholar 

  49. Hutcheson K (1970) A test for comparing diversities based on the Shannon formula. J Theor Biol 29(1):151–154. https://doi.org/10.1016/0022-5193(70)90124-4

    Article  CAS  PubMed  Google Scholar 

  50. Poole RW (1974) An introduction to quantitative ecology. St. Louis, San Fan, New York

    Google Scholar 

  51. Magurran AE (1988) Ecological diversity and its measurement. https://doi.org/10.1007/978-94-015-7358-0

    Article  Google Scholar 

  52. Christensen MJ (1996) Antifungal activity in grasses infected with Acremonium and Epichloë endophytes. Australas Plant Pathol 25(3):186–191. https://doi.org/10.1071/AP96032

    Article  Google Scholar 

  53. Reis A, Boiteux LS, Henz GP (2009) Antracnose em Hortaliças da família Solanacea. Circular Técnica 79, Embrapa Horaliças

  54. Reis A, Costa H, Lopes CA (2007) Epidemiologia e manejo do mofo-branco em hortaliças. Comunicado Técnico 45, Embrapa Horaliças

  55. Schwyn B, Neilands JB (1987) Universal CAS assay for the detection and determination of siderophores. Anal Biochem 160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9

    Article  CAS  PubMed  Google Scholar 

  56. Payne SM (1994) Detection, isolation, and characterization of siderophores. Methods in Enzimology. Academic Press (235):329–344. https://doi.org/10.1016/0076-6879(94)35151-1

  57. Youssef N, Duncan K, Nagle D, Savage K, Knapp R, Mcinerney M (2004) Comparison of methods to detect biosurfactant production by diverse microorganism. J Microbiol Methods 56:339–347. https://doi.org/10.1016/j.mimet.2003.11.001

    Article  CAS  PubMed  Google Scholar 

  58. Labeda DP, Dunlap CA, Rong X et al (2016) Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie van Leeuwenhoek. 110(4):563–583. https://doi.org/10.1007/S10482-016-0824-0

  59. Xia Y, DeBolt S, Dreyer J, Scott D, Williams MA (2015) Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Front Plant Sci 6:490

    Article  Google Scholar 

  60. Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC (2016) Current knowledge and perspectives of Paenibacillus: A review. Microb Cell Fact 15(1):203. https://doi.org/10.1186/s12934-016-0603-7

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lopes R, Tsui S, Gonçalves PJRO, de Queiroz MV (2018) A look into a multifunctional toolbox: endophytic Bacillus species provide broad and underexploited benefits for plants. World J Microbiol Biotechnol 34(7):94. https://doi.org/10.1007/s11274-018-2479-7

    Article  PubMed  Google Scholar 

  62. Miljaković D, Marinković J, Balešević-Tubić S (2020) The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 8(7). https://doi.org/10.3390/microorganisms8071037

  63. Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ (2020) Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol 128(6):1583–1594. https://doi.org/10.1111/jam.14506

    Article  CAS  PubMed  Google Scholar 

  64. Dourado MN, Neves AAC, Santos DS, Araújo WL (2015) Biotechnological and agronomic potential of endophytic pink-pigmented Methylotrophic Methylobacterium spp. Quinn FD ed. BioMed Res Int 909016. https://doi.org/10.1155/2015/909016

  65. Aquino GS, Ventura MU, Alexandrino RP et al (2018) Plant-promoting rhizobacteria Methylobacterium komagatae increases crambe yields, root system and plant height. Ind Crops Prod 121:277–281. https://doi.org/10.1016/j.indcrop.2018.05.020

    Article  Google Scholar 

  66. De Meyer SE, Coorevits A, Willems A (2012) Tardiphaga robiniae gen. nov., sp. nov., a new genus in the family Bradyrhizobiaceae isolated from Robinia pseudoacacia in Flanders (Belgium). Syst Appl Microbiol 35(4):205–214. https://doi.org/10.1016/j.syapm.2012.02.002

  67. Safronova VI, Kuznetsova IG, Sazanova AL et al (2015) Extra-slow-growing Tardiphaga strains isolated from nodules of Vavilovia formosa (Stev.) Fed. Arch Microbiol 197(7):889–898. https://doi.org/10.1007/s00203-015-1122-3

  68. Menezes Júnior IA, Matos GF, Freitas KM, Jesus EC, Rouws LFM (2019) Occurrence of diverse Bradyrhizobium spp. in roots and rhizospheres of two commercial Brazilian sugarcane cultivars. Brazilian J Microbiol 50(3):759–767. https://doi.org/10.1007/s42770-019-00090-6

  69. Gutiérrez-Zamora ML, Martı́nez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91(2):117–126. https://doi.org/10.1016/S0168-1656(01)00332-7

  70. Yanni YG, Dazzo FB, Squartini A, Zanardo M, Zidan MI, Elsadany AEY (2016) Assessment of the natural endophytic association between Rhizobium and wheat and its ability to increase wheat production in the Nile delta. Plant Soil 407(1/2):367–383

    Article  CAS  Google Scholar 

  71. Gao JL, Sun P, Wang XM, Lv FY, Mao XJ, Sun JG (2017) Rhizobium wenxiniae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol. 67(8):2798–2803. https://doi.org/10.1099/ijsem.0.002025

  72. López-López A, Rogel MA, Ormeño-Orrillo E, Martínez-Romero J, Martínez-Romero E (2010) Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst App Microbiol 33(6):322–327. https://doi.org/10.1016/j.syapm.2010.07.005

  73. Shrivastava S, Egamberdieva D, Varma A (2015) Plant growth-promoting rhizobacteria (pgpr) and medicinal plants: the state of the art. In: Springer, Cham 1–16. https://doi.org/10.1007/978-3-319-13401-7_1

  74. Dobritsa AP, Samadpour M (2016) Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia. Int J Syst Evol Microbiol 66(8):2836–2846. https://doi.org/10.1099/ijsem.0.001065

  75. Elshafie HS, Camele I (2021) An overview of metabolic activity, beneficial and pathogenic aspects of Burkholderia Spp. Metabolites 11(5):321. https://doi.org/10.3390/METABO11050321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Esmaeel Q, Miotto L, Rondeau M et al (2018) Paraburkholderia phytofirmans PsJN-plants interaction: from perception to the induced mechanisms. Front Microbiol 9:2093

    Article  Google Scholar 

  77. Panpatte DG, Jhala YK, Shelat HN, Vyas R V (2016) Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture. In: Microbial Inoculants in Sustainable Agricultural Productivity: Research Perspectives. Springer India 257–270. https://doi.org/10.1007/978-81-322-2647-5_15

  78. Chaudhary DK, Khulan A, Kim J (2019) Development of a novel cultivation technique for uncultured soil bacteria. Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-019-43182-x

    Article  CAS  Google Scholar 

  79. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of “unculturable” bacteria. FEMS Microbiol Lett 309(1):1–7. https://doi.org/10.1111/j.1574-6968.2010.02000.x

    Article  CAS  PubMed  Google Scholar 

  80. Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44(4):846–849. https://doi.org/10.1099/00207713-44-4-846/CITE/REFWORKS

    Article  CAS  Google Scholar 

  81. Glaeser SP, Kämpfer P (2015) Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 38(4):237–245. https://doi.org/10.1016/J.SYAPM.2015.03.007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ph.D. Adriana Pereira da Silva for her assistance in the physicochemical analysis of the soil.

Funding

Partial financial support was received from the National Institute of Science and Technology, INCT-Plant-Growth Promoting Microorganisms for Agricultural Sustainability and Environmental Responsibility (CNPq 465133/2014–4, Fundação Araucária-STI 043/2019, CAPES) and the Brazilian National Council for Scientific and Technological Development (CNPq 480080/2013–5). This work was also supported by the infrastructure of the LAMM Facility from Londrina State University. Ana Camila Munis Jardim and Luana de Moura Alves received MSc scholarships from the National Council for the Improvement of Higher Education (CAPES)—Finance code 001. Jéssica Ellen de Oliveira and Giovana Oliveira Gutuzzo received a BASc scholarships from the Araucaria Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design or the acquisition, analysis, or interpretation of data. Material preparation, data collection, and analysis were performed by Ana Camila Munis Jardim, Jéssica Ellen de Oliveira, Luana de Moura Alves, Giovana Oliveira Gutuzzo, André Luiz Martinez de Oliveira, and Elisete Pains Rodrigues. The first draft of the manuscript was written by Ana Camila Munis Jardim and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elisete Pains Rodrigues.

Ethics declarations

Ethics approval

The study does not involve any human or animal participation or data.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Lucy Seldin

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jardim, A.C.M., de Oliveira, J.E., Alves, L.d. et al. Diversity and antimicrobial potential of the culturable rhizobacteria from medicinal plant Baccharis trimera Less D.C.. Braz J Microbiol 53, 1409–1424 (2022). https://doi.org/10.1007/s42770-022-00759-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00759-5

Keywords

Navigation