Skip to main content
Log in

Chromogenicity of aerobic spore-forming bacteria of the Bacillaceae family isolated from different ecological niches and physiographic zones

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

To determine the distribution patterns of pigmented bacteria of the Bacilaceae family in different physiographic zones and ecological niches, we recovered 787 isolates from 185 environmental samples (including the areas with radiation pollution). Among the strains obtained, 149 pigmented representatives were detected, which synthesized intracellular and extracellular pigments of yellow, red, pink, and dark colors. In compliance with physiological, biochemical, and chemotaxonomic features, the isolates were identified as 7 species of the Bacilaceae family. We demonstrated that the ability to synthesize pigments significantly depended on the culture medium composition. According to the color of the colonies, the absorption spectra of pigment extracts, their physicochemical properties, and the implementation of several qualitative tests, the pigmented isolates were divided into ten groups. The relative number of pigmented strains in the physiographic zone was consistent with the total level of solar radiation for the year. Most pigmented members of the Bacillaceae family were recovered from deserts and semi-deserts, and fewest of them originated from mixed forests. We show that among the studied ecological niches, pigmented strains were most often isolated from the phyllosphere and aquatic environment and least often from soils. However, the isolates from soils and aquatic environments exhibited a greater diversity of pigmentation, and a lesser variety of colored strains was obtained from the phyllosphere and the gastrointestinal tract of animals. We established that the quantitative and qualitative composition of pigmented isolates from the areas with radiation contamination differed significantly from those coming from the natural radiation background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Padhi BS (2012) Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. Int J Environ Sci 3(3):940–955

    Google Scholar 

  2. Dufosse L (2009) Pigments, microbial. In: Schaechter M (ed) Encyclopedia of Microbiology, 3rd edn. Elsevier/Academic Press, New-York, pp 457–471

    Chapter  Google Scholar 

  3. Shetty MJ, Geethalekshmi PR, Mini C (2017) Natural pigments as potential food colourants: a review. Trends in bioscience 10(21):4057–4064

    Google Scholar 

  4. Lagashetti AC, Dufossé L, Singh SK, Singh PN (2019) Fungal pigments and their prospects in different industries. Microorganisms 7(12):604

    Article  CAS  PubMed Central  Google Scholar 

  5. Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48(7):1065–1079

    Article  CAS  Google Scholar 

  6. Lim SH, Choi JS, Park EY (2001) Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famate: an overview. Biotechnol Bioprocess Eng 6(2):75–88

    Article  CAS  Google Scholar 

  7. Schaap A, Glasunov A, Vavilova E, Flyakh Y, Voronina L, Morozova E, Akishina R (2005) U.S. Patent Application No. 10/494,071.

  8. Fonseca C, Silva NR., Silvério SIC, Teixeira JA (2018) Production, extraction and characterization of natural fungal pigments from Penicillium sp. ESBES 2018.

  9. Rodríguez-Sáiz M, de la Fuente JL, Barredo JL (2010) Xanthophyllomyces dendrorhous for the industrial production of astaxanthin. Appl Microbiol Biotechnol 88(3):645–658

    Article  PubMed  Google Scholar 

  10. Nielsen P, Fritze D, Priest FG (1995) Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141(7):1745–1761

    Article  CAS  Google Scholar 

  11. Ruiz-González MX, Czirják GÁ, Genevaux P, Møller AP, Mousseau TA, Heeb P (2016) Resistance of feather-associated bacteria to intermediate levels of ionizing radiation near Chernobyl. Sci Rep 6:22969

    Article  PubMed  PubMed Central  Google Scholar 

  12. Saha ML, Afrin S, Sony SK, Islam MN (2017) Pigment producing soil bacteria of Sundarban mangrove forest. Bangladesh J Bot 46(2):717–724

    Google Scholar 

  13. Yoon J-H, Kang S-S, Lee K-C, Kho YH, Choi SH, Kang KH, Park Y-H (2001) Bacillus jeotgali sp. nov., isolated from jeotgal, Korean traditional fermented seafood. Int J Syst Evol Microbiol 51(3):1087–1092

    Article  CAS  PubMed  Google Scholar 

  14. Aono R, Horikoshi K (1991) Carotenes produced by alkaliphilic yellow-pigmented strains of Bacillus. Agric Biol Chem 55(10):2643–2645

    CAS  Google Scholar 

  15. Agnew MD, Koval SF, Jarrell KF (1995) Isolation and characterization of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Syst Appl Microbiol 18(2):221–230

    Article  CAS  Google Scholar 

  16. Yoon J-H, Kim I-G, Kang KH, Oh T-K, Park Y-H (2003) Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 53(5):1297–1303

    Article  CAS  PubMed  Google Scholar 

  17. Chen Y-G, Zhang Y-Q, Wang Y-X, Liu Z-X, Klenk H-P, Xiao H-D, Tang S-K, Cui X-L, Li W-J (2009) Bacillus neizhouensis sp. nov., a halophilic marine bacterium isolated from a sea anemone. Int J Syst Evol Microbiol 59(12):3035–3039

    Article  CAS  PubMed  Google Scholar 

  18. Takano H, Mise K, Hagiwara K, Hirata N, Watanabe S, Toriyabe M, Shiratori-Takano H, Ueda K (2015) Role and function of LitR, an adenosyl B12-bound light-sensitive regulator of Bacillus megaterium QM B1551, in regulation of carotenoid production. J Bacteriol 197(14):2301–2315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rüger H-J, Koploy JAC (1980) DNA base compositions of halophilic and nonhalophilic Bacillus firmus strains of marine origin. Microb Ecol 6(2):141–146

    Article  PubMed  Google Scholar 

  20. Mitchell C, Iyer S, Skomurski JF, Vary JC (1986) Red pigment in Bacillus megaterium spores. Appl Environ Microbiol 52(1):64–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li Z, Kawamura Y, Shida O, Yamagata S, Deguchi T, Ezaki T (2002) Bacillus okuhidensis sp. nov., isolated from the Okuhida spa area of Japan. Int J Syst Evol Microbiol 52(4):1205–1209

    CAS  PubMed  Google Scholar 

  22. Magyarosy A, Ho JZ, Rapoport H, Dawson S, Hancock J, Keasling JD (2002) Chlorxanthomycin, a fluorescent, chlorinated, pentacyclic pyrene from a Bacillus sp. Appl Environ Microbiol 68(8):4095–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Du H, Jiao N, Hu Y, Zeng Y (2006) Diversity and distribution of pigmented heterotrophic bacteria in marine environments. FEMS Microbiol Ecol 57(1):92–105

    Article  CAS  PubMed  Google Scholar 

  24. Duc LH, Fraser PD, Tam NKM, Cutting SM (2006) Carotenoids present in halotolerant Bacillus spore formers. FEMS Microbiol Lett 255(2):215–224

    Article  CAS  Google Scholar 

  25. Asker D, Beppu T, Ueda K (2007) Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol 77(2):383–392

    Article  CAS  PubMed  Google Scholar 

  26. Zhang XF, Yao TD, Tian LD, Xu SJ, An LZ (2008) Phylogenetic and physiological diversity of bacteria isolated from Puruogangri ice core. Microb Ecol 55(3):476–488

    Article  CAS  PubMed  Google Scholar 

  27. Hong HA, Khaneja R, Tam NMK, Cazzato A, Tan S, Urdaci M, Brisson A, Gasbarrini A, Barnes I, Cutting SM (2009) Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol 160(2):134–143

    Article  CAS  PubMed  Google Scholar 

  28. Reva ON, Smirnov VV, Pettersson B, Priest FG (2002) Bacillus endophyticus sp. nov., isolated from the inner tissues of cotton plants (Gossypium sp.). Int J Syst Evol Microbiol 52(1):101–107

    Article  CAS  PubMed  Google Scholar 

  29. Khaneja R, Perez-Fons L, Fakhry S, Baccigalupi L, Steiger S, To E, Sandmann G, Dong TC, Ricca E, Fraser PD, Cutting SM (2010) Carotenoids found in Bacillus. J Appl Microbiol 108(6):1889–1902

    CAS  PubMed  Google Scholar 

  30. Sy C, Gleize B, Chamot S, Dangles O, Carlin F, Veyrat CC, Borel P (2013) Glycosyl carotenoids from marine spore-forming Bacillus sp. strains are readily bioaccessible and bioavailable. Food Res Int 51(2):914–923

    Article  CAS  Google Scholar 

  31. Heinen W, Lauwers AM, Mulders JWM (1982) Bacillus flavothermus, a newly isolated facultative thermophile. Antonie Van Leeuwenhoek 48(3):265–272

    Article  CAS  PubMed  Google Scholar 

  32. Suresh K, Prabagaran SR, Sengupta S, Shivaji S (2004) Bacillus indicus sp. nov., an arsenic-resistant bacterium isolated from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54(4):1369–1375

    Article  CAS  PubMed  Google Scholar 

  33. Banik A, Pandya P, Patel B, Rathod C, Dangara M (2018) Characterization of halotolerant, pigmented, plant growth promoting bacteria of groundnut rhizosphere and its in-vitro evaluation of plant-microbe protocooperation to withstand salinity and metal stress. Sci Total Environ 630(15):231–242

    Article  CAS  PubMed  Google Scholar 

  34. Subhash Y, Sasikala C, Ramana CV (2014) Bacillus luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 64(5):1580–1586

    Article  CAS  PubMed  Google Scholar 

  35. Sultanpuram VR, Mothe T (2016) Salipaludibacillus aurantiacus gen. nov., sp. nov. a novel alkali tolerant bacterium, reclassification of Bacillus agaradhaerens as Salipaludibacillus agaradhaerens comb. nov. and Bacillus neizhouensis as Salipaludibacillus neizhouensis comb. nov. Int J Syst Evol Microbiol 66(7):2747–2753.

  36. Samrot AV, Rio AJ, Kumar SS, Samanvitha SK (2017) Bioprospecting studies of pigmenting Pseudomonas aeruginosa SU-1, Microvirga aerilata SU14 and Bacillus megaterium SU15 isolated from garden soil. Biocatal Agric Biotechnol 11:330–337

    Article  Google Scholar 

  37. Manzo N, Di Luccia B, Isticato R, D’Apuzzo E, De Felice M, Ricca E (2013) Pigmentation and sporulation are alternative cell fates in Bacillus pumilus SF214. PLoS ONE 8(4):e62093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luong TT, Huong NT, Ha BTV, Huong PTT, Anh NH, Huong DTV, Van QTH, Nghia PT, Anh NTV (2016) Carotenoid producing Bacillus aquimaris found in chicken gastrointestinal tracts. Vietnam J Biotechnol 14(4):761–768

    Article  Google Scholar 

  39. Fakhry SS, Jessim AI, Azeez AZ, Alwash SJ, Abdulbaqi AA (2017) Protein binding pigment by Bacillus pumilus SF214. Karbala International Journal of Modern Science 3(2):97–102

    Article  Google Scholar 

  40. Pane L, Radin L, Franconi G, Carli A (1996) The carotenoid pigments of a marine Bacillus firmus strain. Boll Soc Ital Biol Sper 72(11–12):303–308

    CAS  PubMed  Google Scholar 

  41. Osawa A, Iki K, Sandmann G, Shindo K (2013) Isolation and identification of 4, 4’-diapolycopene-4,4’-dioic acid produced by Bacillus firmus GB1 and its singlet oxygen quenching activity. J Oleo Sci 62(11):955–960

    Article  CAS  PubMed  Google Scholar 

  42. Stout JD (1960) Bacteria of soil and pasture leaves at Claudelands showgrounds. N Z J Agric Res 3(3):413–430

    Article  Google Scholar 

  43. Moeller R, Horneck G, Facius R, Stackebrandt E (2005) Role of pigmentation in protecting Bacillus sp. endospores against environmental UV radiation. FEMS Microbiol Ecol 51(2):231–236

    Article  CAS  PubMed  Google Scholar 

  44. Steiger S, Perez-Fons L, Fraser PD, Sandmann G (2012) Biosynthesis of a novel C30 carotenoid in Bacillus firmus isolates. J Appl Microbiol 113(4):888–895

    Article  CAS  PubMed  Google Scholar 

  45. Ramesh CH, Mohanraju R, Murthy KN, Karthick P (2017) Molecular characterization of marine pigmented bacteria showing antibacterial activity. Indian J Geo-Mar Sci 46(10):2081–2087

    Google Scholar 

  46. Feng X, Hu Y, Zheng Y, Zhu W, Li K, Huang C-H, Ko T-P, Ren F, Chan H-C, Nega M, Bogue S, López D, Kolter R, Götz F, Guo R-T, Oldfield E (2014) Structural and functional analysis of Bacillus subtilis YisP reveals a role of its product in biofilm production. Chem Biol 21(11):1557–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barnett TA, Hageman JH (1983) Characterization of a brown pigment from Bacillus subtilis cultures. Can J Microbiol 29(3):309–315

    Article  CAS  Google Scholar 

  48. Nakamura LK (1989) Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int J Syst Bacteriol 39(3):295–300

    Article  Google Scholar 

  49. Hullo M-F, Moszer I, Danchin A, Martin-Verstraete I (2001) CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol 183(18):5426–5430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen Y, Deng Y, Wang J, Cai J, Ren G (2004) Characterization of melanin produced by a wild-type strain of Bacillus thuringiensis. J Gen Appl Microbiol 50(4):183–188

    Article  CAS  PubMed  Google Scholar 

  51. Drewnowska JM, Zambrzycka M, Kalska-Szostko B, Fiedoruk K, Swiecicka I (2015) Melanin-like pigment synthesis by soil Bacillus weihenstephanensis isolates from Northeastern Poland. PLoS One 10(4):e0125428

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ramesh C, Vinithkumar NV, Kirubagaran R, Venil CK, Dufossé L (2019) Multifaceted applications of microbial pigments: current knowledge, challenges and future directions for public health implications. Microorganisms 7(7):186

    Article  CAS  PubMed Central  Google Scholar 

  53. Green J, Bohannan BJM (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21(9):501–507

    Article  PubMed  Google Scholar 

  54. Hathaway JJM, Garcia MG, Balasch MM, Spilde MN, Stone FD, Dapkevicius MDLNE, Amorim IR, Gabriel R, Borges PAV, Northup DE (2014) Comparison of bacterial diversity in Azorean and Hawai’ian lava cave microbial mats. Geomicrobiol J 31(3):205–220

    Article  Google Scholar 

  55. Hermansson M, Jones GW, Kjelleberg S (1987) Frequency of antibiotic and heavy metal resistance, pigmentation, and plasmids in bacteria of the marine air-water interface. Appl Environ Microbiol 53(10):2338–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiologicaldiversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70(1):202–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dancer SJ, Shears P, Platt DJ (1997) Isolation and characterization of coliforms from glacial ice and water in Canada’s High Arctic. J Appl Microbiol 82(5):597–609

    Article  CAS  PubMed  Google Scholar 

  58. Sneath PHA, Mair NS, Sharpe ME, Holt JG (1986) Bergey’s Manual of Systematic Bacteriology (9th ed.) Vol. 2. The Williams and Wilkins Co., Baltimore, USA

  59. Morey A, Oliveira AC, Himelbloom BH (2013) Identification of Seafood bacteria from cellular fatty acid analysis via the Sherlock® microbial identification system. Journal of Biology and Life Sciences 4(2):139

    Google Scholar 

  60. Ito S, Wakamatsu K (1998) Chemical degradation of melanins: application to identification of dopamine-melanin. Pigment Cell Res 11(2):120–126

    Article  CAS  PubMed  Google Scholar 

  61. Gupta RS, Patel S, Saini N, Chen S (2020) Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 70(11):5753–5798.

  62. Agogué H, Joux F, Obernosterer I, Lebaron P (2005) Resistance of marine bacterioneuston to solar radiation. Appl Environ Microbiol 71(9):5282–5289

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sundin GW, Jacobs JL (1999) Ultraviolet radiation (UVR) sensitivity analysis and UVR survival strategies of a bacterial community from the phyllosphere of field-grown peanut (Arachis hypogeae L.). Microb Ecol 38(1):27–38

    Article  CAS  PubMed  Google Scholar 

  64. Jacobs JL, Sundin GW (2001) Effect of solar UV-B radiation on a phyllosphere bacterial community. Appl Environ Microbiol 67(12):5488–5496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kunitsky C, Osterhout G, Sasser M (2006) Identification of microorganisms using fatty acid methyl ester (FAME) analysis and the MIDI Sherlock Microbial Identification System. In: Miller MJ (ed) Encyclopedia Rapid Microbiol Methods, vol 3, 1–18.

  66. Slabbinck B, De Baets B, Dawyndt P, De Vos P (2008) Genus-wide Bacillus species identification through proper artificial neural network experiments on fatty acid profiles 94(2):187–198

  67. Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JAM, Cregger MA, Moorhead LC, Patterson CM (2015) Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 6(8):130

    Article  Google Scholar 

  68. Liu L, Zhu K, Wurzburger N, Zhang J (2020) Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere 11(1):e02999

    Article  Google Scholar 

  69. Christner BC, Mosley-Thompson E, Thompson LG, Zagorodnov V, Sandman K, Reeve JN (2000) Recovery and identification of viable bacteria immured in glacial Ice. Icarus 144(2):479–485

    Article  Google Scholar 

  70. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69(4):1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Livinska Olena, Hudkov Dmytro, Tashyrev Olexandr, Zhezherya Vladyslav, and Petruk Tetiana for their help in the sample collection process.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the final manuscript. Kharkhota Maksym developed the general idea of research, conducted the screening of pigmented isolates, and participated in the article writing. Hrabova Hanna executed the primary identification of dark, yellow, and red pigments. Kharchuk Maksym performed the primary identification of fluorescent pigments and participated in article writing and formatting. Ivanytsia Tetiana identified the isolates using the MIDI Sherlock system.

Mozhaieva Larysa isolated the strains of aerobic spore-forming microorganisms from the environmental samples. Poliakova Alina verified the isolates for purity, conducted the studies of their physiological and biochemical characteristics, and participated in the article formatting. Avdieieva Liliia performed the general research management and assisted in identifying the patterns and formulating conclusions.

Corresponding author

Correspondence to A. Poliakova.

Ethics declarations

Ethics approval

This study involved fecal sampling from animals, namely, chickens, pigs, and cattle. The study protocol was assessed and approved by the Bioethics Commission of D.K. Zabolotny Institute of Microbiology and Virology of the NAS of Ukraine (Record No. 67). The owners of the animals provided their verbal informed consent for animal sampling by veterinarians. The collection of fecal samples was carried out adhering to the European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (Strasbourg, 1986).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Lucy Seldin

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharkhota, M., Hrabova, H., Kharchuk, M. et al. Chromogenicity of aerobic spore-forming bacteria of the Bacillaceae family isolated from different ecological niches and physiographic zones. Braz J Microbiol 53, 1395–1408 (2022). https://doi.org/10.1007/s42770-022-00755-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00755-9

Keywords

Navigation