Skip to main content
Log in

Arbuscular mycorrhizal fungi inoculation stimulates the production of foliar secondary metabolites in Passiflora setacea DC.

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Passiflora setacea DC. growing is of interest to the herbal industries since in its leaves are produced secondary metabolites that confer antioxidant, anxiolytic, and antidepressant properties in Passiflora. Therefore, it is important to search for sustainable alternatives that aim to enhance the production of these compounds to add value to the phytomass, such as the inoculation with arbuscular mycorrhizal fungi (AMF) and the application of coconut coir dust, which has not been reported to P. setacea yet. The aim was to select the efficient combination of AMF and coconut coir dust to increase the compounds’ production and optimize the antioxidant activity in P. setacea leaves. The P. setacea seedlings that were cultivated in substrates without coconut coir dust and colonized by Gigaspora albida N.C. Schenck & G.S. Sm. produced more total saponins (1,707.43%), total tannins (469.98%), and total phenols (85.81%), in comparison to the non-mycorrhizal plants, in addition to enhancing the glomalin-related soil proteins. On the other hand, in general, the use of coir dust as a substrate has not been shown to increase the production of these bioactive compounds. It is concluded that the production of P. setacea seedlings using G. albida is an alternative to offer phytomass to the herbal medicines industry based on passion fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Dhawan K, Dhawan S, Sharma A (2004) Passiflora: a review update. J Ethnopharm 4:1–23. https://doi.org/10.1016/j.jep.2004.02.023

    Article  CAS  Google Scholar 

  2. ANVISA BR (2019) Formulário de Fitoterápicos da Farmacopeia Brasileira. Ministério da Saúde. Brasília, Distrito Federal

  3. Coleta M, Batista MT, Campos MG, Carvalho R, Cotrim MD, Lima TCM, Cunha AP (2006) Neuropharmacological evaluation of the putative anxiolytic effects of Passiflora edulis Sims, its sub-fractions and flavonoid constituents. Phytother Res 20:1067–1073. https://doi.org/10.1002/ptr.1997

    Article  CAS  PubMed  Google Scholar 

  4. Deng J, Zhou Y, Bai M, Li H, Li L (2010) Anxiolytic and sedative activities of Passiflora edulis f. flavicarpa. J Ethnopharm 128:148–153. https://doi.org/10.1016/j.jep.2009.12.043

    Article  Google Scholar 

  5. Klein N, Gazola AC, Lima TCM, Schenkel E, Nieber K, Butterweck V (2014) Assessment of sedative effects of Passiflora edulis f. flavicarpa and Passiflora alata extracts in mice, measured by telemetry. Phytother Res 28:706–713. https://doi.org/10.1002/ptr.5043

    Article  PubMed  Google Scholar 

  6. Ayres ASFSJ, Santos WB, Junquira-ayres DD et al (2017) Monoaminergic neurotransmission is necessity the antidepressant-like effects of Passiflora edulis Sims fo. Sims Neurosci Lett 660:79–85. https://doi.org/10.1016/j.neulet.2017.09.010

    Article  CAS  PubMed  Google Scholar 

  7. Wosch L, Santos KC, Imig DC, Santos CA (2017) Comparative study Passiflora taxa leaves: II. A chromatographic profile Rev Bras Farmacogn 27:40–49. https://doi.org/10.1016/j.bjp.2016.06.007

    Article  CAS  Google Scholar 

  8. He M, Min JW, Kong WL, He XH, Li JX, Peng BW (2016) A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115:74–85. https://doi.org/10.1016/j.fitote.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  9. Wang C, Xu FQ, Shang JH, Xiao H, Fan WW, Dong FW, Hu JM, Zhou J (2013) Cycloartane triterpenoid saponins from water soluble of Passiflora edulis Sims and their antidepressant-like effects. J Ethnopharmacol 148:812–817. https://doi.org/10.1016/j.jep.2013.05.010

    Article  CAS  PubMed  Google Scholar 

  10. IBGE (2019) Produção Agrícola Municipal – Culturas temporárias e permanentes. Ministério do Planejamento, Orçamento e Gestão. https://sidra.ibge.gov.br/tabela/2887. Accessed 16 May 2021

  11. Faleiro FG, Junqueira NTV, Braga MF (2005) Maracujá: germoplasma e melhoramento genético. Embrapa. Planaltina, Brasília

  12. Bernacci LC et al. (2020) Passiflora in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB12506. Accessed 21 May 2021

  13. Braga MF et al. (2018) Passiflora spp. Maracujá-do-cerrado In: Espécies nativas da flora brasileira de valor econômico atual ou potencial: plantas para o futuro - Região Centro-Oeste Passiflora spp. Vieira RF et al. (ed.). Ministério do Meio Ambiente, Brasília, 272–279

  14. Junqueira NTV, Braga M, Faleiro F, Peixoto JR, Bernacci L (2005) Potencial de espécies silvestres de maracujazeiro como fonte de resistência a doenças. Maracujá: germoplasma e melhoramento genético. Brasília, Planaltina

  15. Torres N, Goicoechea N, Antolín MC (2015) Antioxidant properties of leaves from different accessions of grapevine (Vitis vinifera L.) cv. Tempranillo after applying biotic and/or environmental modulator factors. Ind Crop Prod 76:77–85. https://doi.org/10.1016/j.indcrop.2015.03.093

    Article  CAS  Google Scholar 

  16. Parada J, Valenzuela T, Gómez F, Tereucán G, García S, Cornejo P, Winterhalter P, Ruiz A (2019) Effect of fertilization and arbuscular mycorrhizal fungal inoculation on antioxidant profiles and activities in Fragaria ananassa fruit. J Sci Food Agric 99:1397–1404. https://doi.org/10.1002/jsfa.9316

    Article  CAS  PubMed  Google Scholar 

  17. Correa NV (2018) Pó da casca do coco. Agência Embrapa de Informação Tecnológica. www.agencia.cnptia.embrapa.br. Accessed 20 November 2020

  18. Oliveira PTF, Santos ELS, Silva WAV, Ferreira MRA, Soares LAL, Silva FA, Silva FSB (2020) Use of mycorrhizal fungi releases the application of organic fertilizers to increase the production of leaf vitexin in yellow passion fruit. J Sci Food Agric 100:1816–1821. https://doi.org/10.1002/jsfa.10197

    Article  CAS  PubMed  Google Scholar 

  19. Silva EM, Melo NF, Mendes MAS, Araújo FP, Maia LC, Yano-Melo AM (2015) Response of Passiflora setacea to mycorrhization and phosphate fertilization in a semiarid region. J Plant Nutr 38:431–442. https://doi.org/10.1080/01904167.2014.93447

    Article  CAS  Google Scholar 

  20. Oliveira MS, Campos MAS, Silva FSB (2015) Arbuscular mycorrhizal fungi and vermicompost maximize the production of foliar biomolecules in Passiflora alata Curtis. seedlings. J Sci Food Agric 95:522–528. https://doi.org/10.1002/jsfa.6767

    Article  CAS  PubMed  Google Scholar 

  21. Oliveira MS, Pinheiro IO, Silva FSB (2015) Vermicompost and arbuscular mycorrhizal fungi: an alternative to increase foliar orientin and vitexin-2-O-ramnoside synthesis in Passiflora alata Curtis seedlings. Ind Crops Prod 77:754–775. https://doi.org/10.1016/j.indcrop.2015.09.061

    Article  CAS  Google Scholar 

  22. Oliveira PTF, Santos ELS, Silva WAV, Ferreira MRA, Soares LAL, Silva FA, Silva FSB (2019) Production of biomolecules of interest to the anxiolytic herbal medicine industry in yellow passionfruit leaves (Passiflora edulis f. flavicarpa) promoted by mycorrhizal inoculation. J Sci Food Agric 99:3716–3720. https://doi.org/10.1002/jsfa.9598

    Article  CAS  PubMed  Google Scholar 

  23. INVAM (2019) Mean infection percentage (MIP) method. West Virginia University. https://invam.wvu.edu/methods/infectivity-assays/mean-infection-percentage-mip. Accessed 30 May 2021

  24. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infections. Trans Br Mycol Soc 55:158–161. https://doi.org/10.1016/S0007-1536(70)80110-3

    Article  Google Scholar 

  25. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. https://www.jstor.org/stable/2432123

  26. Wright SF, Upadhyaya AA (1998) Survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107. https://doi.org/10.1023/A:1004347701584

    Article  CAS  Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  28. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  29. Orujei Y, Shabani L, Sharifi-Tehrani M (2013) Induction of glycyrrhizin and total phenolic compound production in licorice by using arbuscular mycorrhizal fungi. Russ J Plant Physl 60:855–860. https://doi.org/10.1134/S1021443713050129

    Article  CAS  Google Scholar 

  30. Monteiro JM, Albuquerque UP, Lins Neto EF, Araújo EL, Albuquerque MM, Amorim ELC (2014) The effects of seasonal climate changes in the caatinga on tannin levels in Myracrodruon urundeuva (Engl.) Fr. All. and Anadenanthera colubrina (Vell.) Brenan. Rev Bras Farmacogn 16:338–344. https://doi.org/10.1590/S0102-695X2006000300010

    Article  Google Scholar 

  31. Queiros CRAA, Morais SAL, Nascimento EA (2002) Caracterização dos taninos da aroeira-preta (Myracrodruon urundeuva). Revista Árvore 26:485–492. https://doi.org/10.1590/S0100-67622002000400011

    Article  Google Scholar 

  32. Vigo CLS, Narita E, Marques LC (2003) Validação da metodologia de quantificação espectrofotométrica das saponinas de Pfaffia glomerata (Spreng.) Pedersen – Amaranthaceae. Rev Bras Farmacogn 13:46–49. https://doi.org/10.1590/S0102-695X2003000400016

    Article  Google Scholar 

  33. Rufino MSM, Alves RE, Brito ES, Morais SM, Sampaio CG, Pérez-Jiménez J et al. (2007) Metodologia Científica: determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH. Embrapa, Fortaleza

  34. Riter Netto AF, Freitas MSM, Martins MA, Carvalho AJC, Vitorazi Filho JA (2014) Efeito de fungos micorrízicos arbusculares na bioprodução de fenóis totais e no crescimento de Passiflora alata Curtis. Rev Bras Pl Med 16:1–9. https://doi.org/10.1590/S1516-05722014000100001

    Article  Google Scholar 

  35. Silva FSB, Silva FA (2020) A low cost alternative, using mycorrhiza and organic fertilizer, to optimize the production of foliar bioactive compounds in pomegranates. J Appl Microbiol 128:513–517. https://doi.org/10.1111/jam.14477

    Article  CAS  PubMed  Google Scholar 

  36. Pineli LLO, Rodrigues JSQ, Costa AM, Lima HC, Chiarellod MD, Meloe L (2015) Antioxidants and sensory properties of the infusions of wild Passiflora from Brazilian savannah: potential as functional beverages. J Sci Food Agric 95:1500–1506. https://doi.org/10.1002/jsfa.6852

    Article  CAS  Google Scholar 

  37. Ferrol N, Azcón-Aguilar C, Pérez-Tienda J (2019) Review: arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: an overview on the mechanisms involved. Plant Sci 280:441–447. https://doi.org/10.1016/j.plantsci.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  38. Averesch N, Krömer JO (2018) Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds-present and future strain construction strategies. Front Bioeng Biotech 6:1–19. https://doi.org/10.3389/fbioe.2018.00032

    Article  Google Scholar 

  39. Vieira LC, Silva DKA, Melo MAC, Escobar IEC, Oehl F, Silva EA (2019) Edaphic factors influence the distribution of arbuscular mycorrhizal fungi along an altitudinal gradient of a tropical mountain, microbial ecology. Ecol Res 34:182–192. https://doi.org/10.1007/s00248-019-01354-2

    Article  Google Scholar 

  40. Hart M, Reader R (2002) Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol Fertil Soils 36:357–366. https://doi.org/10.1007/s00374-002-0539-4

    Article  Google Scholar 

  41. Emran M, Doni S, Macci C, Masciandaro G, Rashada M, Gispert M (2020) Susceptible soil organic matter, SOM, fractions to agricultural management practices in salt-affected soils. Geoderma 366:114257–114167. https://doi.org/10.1016/j.geoderma.2020.114257

    Article  CAS  Google Scholar 

  42. Parihar M, Rakshit A, Meena VS et al (2020) The potential of arbuscular mycorrhizal fungi in C cycling: a review. Arch Microbiol 202:1581–1596. https://doi.org/10.1007/s00203-020-01915-x

    Article  CAS  PubMed  Google Scholar 

  43. Hristozkova M, Geneva M, Stancheva I, Iliev I, Azcón-Aguilar C (2017) Symbiotic association between golden berry (Physalis peruviana) and arbuscular mycorrhizal fungi in heavy metal-contaminated soil. J Plant Prot Res 57:173–184. https://doi.org/10.1515/jppr-2017-0024

    Article  CAS  Google Scholar 

  44. Hoseini RZ, Goltapeh EM, Modarres-Sanavy SAM, Heidarzadeh A (2021) Effect of the bio-fertilizers on the steviol glycosides (SGs) content and biomass in Stevia rebaudiana (Bert) Bertoni at vegetative and flowering stages. Sci Hort 275:109658. https://doi.org/10.1016/j.scienta.2020.109658

    Article  CAS  Google Scholar 

  45. Santos EL, Silva FA, Silva FSB (2017) Arbuscular mycorrhizal fungi increase the phenolic compounds concentration in the bark of the stem of Libidibia ferrea in field conditions. Open Microbiol J 11:283–291. https://doi.org/10.2174/1874285801711010283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Santos EL, Silva WAV, Ferreira MRA, Soares LA, Sampaio EVSB, Silva FA, Silva FSB (2020) Acaulospora longula increases the content of phenolic compounds and antioxidant activity in fruits of Libidibia ferrea. Open Microbiol J 14:132–139. https://doi.org/10.2174/1874285802014010132

    Article  CAS  Google Scholar 

  47. Silva FA, Silva FSB (2017) Is the application of arbuscular mycorrhizal fungi an alternative to increase foliar phenolic compounds in seedlings of Mimosa tenuiflora (Wild.) Poir., Mimosoideae? Braz J Bot 40:361–365. https://doi.org/10.1007/s40415-016-0320-9

    Article  Google Scholar 

  48. Gao X, Guo H, Zhang Q, Guo H, Zhang L, Zhang C, Gou Z, Liu Y, Wei J, Chen A, Chu Z, Zeng F (2020) Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Sci Rep 10:2084–2095. https://doi.org/10.1038/s41598-020-59180-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jami N, Rahimi A, Naghizadeh M, Sedaghati E (2019) Investigating the use of different levels of mycorrhiza and vermicompost on quantitative and qualitative yield of saffron (Crocus sativus L.). Sci Hort 275:109027. https://doi.org/10.1016/j.scienta.2019.109027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorBrasil (CAPES) — Finance Code 001. The authors would like to thank Embrapa Cerrados (Brazil) for donating Passiflora setacea seeds.

Funding

This research was supported by the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorBrasil (CAPES) — Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Silva, F.S.B.; data curation: Muniz, B.C., Silva, F.S.B.; formal analysis: Muniz, B.C., Silva, F.S.B.; funding acquisition: Silva, F.S.B.; investigation: Muniz, B.C., Falcão, E.L.; methodology: Muniz, B.C., Falcão, E.L., Silva, F.S.B.; project administration: Silva, F.S.B.; resources: Silva, F.S.B.; supervision: Silva, F.S.B.; visualization: Muniz, B.C., Falcão, E.L., Silva, F.S.B.; writing — original draft preparation: Muniz, B.C., Falcão, E.L., Silva, F.S.B.; writing — review and editing: Muniz, B.C., Falcão, E.L., Silva, F.S.B.

Corresponding author

Correspondence to Fábio Sérgio Barbosa da Silva.

Ethics declarations

Ethics approval

Not applicable.

Consent

All authors consent the publication of this research.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Jerri Zilli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniz, B.C., Falcão, E.L. & da Silva, F.S.B. Arbuscular mycorrhizal fungi inoculation stimulates the production of foliar secondary metabolites in Passiflora setacea DC.. Braz J Microbiol 53, 1385–1393 (2022). https://doi.org/10.1007/s42770-022-00752-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00752-y

Keywords

Navigation