Skip to main content
Log in

Phenolic compounds of Phellinus spp. with antibacterial and antiviral activities

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Phellinus Quél is one of the largest genera of Hymenochaetaceae; it comprises about 220 species widely distributed on Earth. Most Phellinus species are lignicolous mushrooms that accumulate bioactive compounds. This research studied the phenolic composition of Phellinus spp. and their relationship with antibacterial and antiviral capacity. Phenolics were extracted from Phellinus badius, P. fastuosus, and P. grenadensis; their antiviral and antibacterial activities were evaluated against Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, and Escherichia coli O157: H7; and the bacteriophages MS2 and Φ- × 174. Gallic acid, chlorogenic acid, caffeic acid, epicatechin, ferulic acid, catechin, 1,3-dicaffeoylquinic acid, p-coumaric acid, and rutin were found in different proportions among Phellinus spp. Total phenolic content ranged from 96 to 209 mg GAE/g, and total flavonoids from 10 to 27 QE/g. The minimum inhibitory concentrations of P. badius, P. grenadensis, and P. fastuosus against E. coli O157: H7 were 13, 20, and 27 mg/mL, against S. enterica were 20, 30, and 15 mg/mL, and against L. monocytogenes were 10, 15, and 25 mg/mL, respectively. The phenolic content was better correlated with the antibacterial effect against E. coli O157: H7 and L. monocytogenes (r = 0.8–0.9), but not against S. enterica (r = 0.05). The antiviral activity of the extracts (0.9 mg/mL) was 29 to 41% against MS2 and 27 to 38% for Φ-X174 virus (r = 0.8–0.9). In silico analysis showed binding energy values of − 7.9 and − 4.8 kcal/mol between the identified phenolic compounds and the M and G proteins of each virus. The antibacterial and antiviral properties of Phellinus species were correlated with the phenolic content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data can be found on the institution repository (https://ciad.repositorioinstitucional.mx/jspui/handle/1006/346) or requested to the corresponding author. The used fungal material can be located at the fungal collection “Dr. Martín Esqueda Valle” at the herbarium of the Sonoran State University.

Code availability

Not applicable.

References

  1. Hyde KD, Xu J, Rapior S et al (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97:1–136. https://doi.org/10.1007/s13225-019-00430-9

    Article  Google Scholar 

  2. Shirouzu T, Matsuoka S, Doi H, Nagata N, Ushio M, Hosaka K (2020) Complementary molecular methods reveal comprehensive phylogenetic diversity integrating inconspicuous lineages of early-diverged wood-decaying mushrooms. Sci Rep 10:e3057. https://doi.org/10.1038/s41598-020-59620-0

    Article  CAS  Google Scholar 

  3. Kawashte G, Sonawane H, Mittal S, Borde M 2021 Medicinal fungi: a natural source of pharmacologically important metabolites. In Recent Developments in Microbial Technologies. Ed. Springer. p 379 – 394. https://doi.org/10.1007/978-981-15-4439-2_18

  4. He P, Zhang Y, Li N (2021) The phytochemistry and pharmacology of medicinal fungi of the genus Phellinus: a review. Food Funct 12:1856–1881. https://doi.org/10.1039/D0FO02342F

    Article  CAS  PubMed  Google Scholar 

  5. Varghese R, Dalvi YB, Lamrood PY, Shinde BP, Nair CKK. Historical and current perspectives on therapeutic potential of higher basidiomycetes: an overview. 3 Biotech, 9:362. https://doi.org/10.1007/s13205-019-1886-2

  6. Sandargo B, Chepkirui C, Cheng T, Chaverra-Muñoz L, Thongbai B, Stadler M, Hüttel S (2019) Biological and chemical diversity go hand in hand: Basidiomycota as source of new pharmaceuticals and agrochemicals. Biotechnol Adv 37:e107344. https://doi.org/10.1016/j.biotechadv.2019.01.011

    Article  CAS  Google Scholar 

  7. Shi L, Tan Y, Sun Z, Ren A, Zhu J, Zhao M (2019) Exogenous salicylic acid (SA) promotes the accumulation of biomass and flavonoid content in Phellinus igniarius (Agaricomycetes). Int J Med Mushrooms 21:955–963. https://doi.org/10.1615/IntJMedMushrooms.2019032557

    Article  PubMed  Google Scholar 

  8. Ayala-Zavala JF, Pérez-Carlón JJ, Esqueda M et al (2012) Polar fractionation affects the antioxidant properties of methanolic extracts from species of genus Phellinus Quél. (higher Basidiomycetes). Int J Med Mushrooms 14:563–573. https://doi.org/10.1615/intjmedmushr.v14.i6.40

    Article  PubMed  Google Scholar 

  9. Ayala-Zavala JF, Silva-Espinoza BA, Cruz-Valenzuela MR et al (2012) Antioxidant and antifungal potential of methanol extracts of Phellinus spp. from Sonora. Mexico Rev Iberoam Micol 29:132–138. https://doi.org/10.1016/j.riam.2011.09.004

    Article  PubMed  Google Scholar 

  10. Yoon KN, Jang HS (2016) Antioxidant and antimicrobial activities of fruiting bodies of Phellinus gilvus collected in Korea. Korean J Clin Lab Sci 48(4):355–364. https://doi.org/10.15324/kjcls.2016.48.4.355

    Article  Google Scholar 

  11. Kodiyalmath JK, Krishnappa M (2017) Evaluation of antimicrobial activity of Phellinus linteus (Berk. & MA Curtis.) with their wild collections from Western Ghats of India. Tropical Plant Res 4(2):351–7. https://doi.org/10.22271/tpr.2017.v4.i2.046

    Article  Google Scholar 

  12. Andersen PI, Ianevski A, Lysvand H et al (2020) Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infec Dis 93:268–276. https://doi.org/10.1016/j.ijid.2020.02.018

    Article  CAS  Google Scholar 

  13. Ben-Shabat S, Yarmolinsky L, Porat D, Dahan A (2020) Antiviral effect of phytochemicals from medicinal plants: applications and drug delivery strategies. Drug Delivery Transl Res 10:354–367. https://doi.org/10.1007/s13346-019-00691-6

    Article  CAS  Google Scholar 

  14. Calland N, Sahuc ME, Belouzard S et al (2015) Polyphenols inhibit hepatitis C virus entry by a new mechanism of action. J Virol 89:10053–10063. https://doi.org/10.1128/JVI.01473-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chowdhury P, Sahuc ME, Rouillé Y et al (2018) Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PLoS ONE 13:e0198226. https://doi.org/10.1371/journal.pone.0198226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Makola MM, Dubery IA, Koorsen G et al (2016) The effect of geometrical isomerism of 3,5-Dicaffeoylquinic acid on its binding affinity to HIV-integrase enzyme: a molecular docking study. J Evidence-Based Complementary Altern Med 2016:e4138263. https://doi.org/10.1155/2016/4138263

    Article  Google Scholar 

  17. Elhusseiny SM, El-Mahdy TS, Awad MF, Elleboudy NS, Farag MMS, Aboshanab KM, Yassien MA (2021) Antiviral, cytotoxic, and antioxidant activities of three edible agaricomycetes mushrooms: Pleurotus columbinus, Pleurotus sajor-caju, and Agaricus bisporus. J of Fungi 7(8):645. https://doi.org/10.3390/jof7080645

    Article  CAS  Google Scholar 

  18. Gilbertson RL, Ryvarden L 1987 North American Polypores. Vol. 2. Megasporoporia – Wrightoporia. Fungiflora, Oslo.

  19. Larsen MJ, Cobb-Poulle LA 1989 Phellinus (Hymenochaetaceae). A survey of the world taxa. Fungiflora, Oslo.

  20. Index Fungorum 2019 Richmond, Royal Botanic Gardens Kew. http://indexfungorum.org. Accessed 10 November 2019

  21. Vazquez-Armenta FJ, Bernal-Mercado AT, Lizardi-Mendoza J et al (2018) Phenolic extracts from grape stems inhibit Listeria monocytogenes motility and adhesion to food contact surfaces. J Adhes Sci Technol 32:889–907. https://doi.org/10.1080/01694243.2017.1387093

    Article  CAS  Google Scholar 

  22. Çayan F, Deveci E, Tel-Çayan G, Duru ME (2020) Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC-DAD. J Food Meas Charact 14:1690–1698. https://doi.org/10.1007/s11694-020-00417-0

    Article  Google Scholar 

  23. Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559. https://doi.org/10.1016/S0308-8146(98)00102-2

    Article  CAS  Google Scholar 

  24. Fratianni F, Coppola R, Nazzaro F (2011) Phenolic composition and antimicrobial and antiquorum sensing activity of an ethanolic extract of peels from the apple cultivar Annurca. J Med Food 14:957–963. https://doi.org/10.1089/jmf.2010.0170

    Article  CAS  PubMed  Google Scholar 

  25. Vazquez-Armenta FJ, Bernal-Mercado AT, Tapia-Rodriguez MR et al (2018) Quercetin reduces adhesion and inhibits biofilm development by Listeria monocytogenes by reducing the amount of extracellular proteins. Food Control 90:266–273. https://doi.org/10.1016/j.foodcont.2018.02.041

    Article  CAS  Google Scholar 

  26. Baranyi J, McClure PJ, Sutherland PJ, Roberts TA (1993) Modeling bacterial growth responses. J Ind Microbiol 12:190–194. https://doi.org/10.1007/BF01584189

    Article  Google Scholar 

  27. Bae J, Schwab KJ (2008) Evaluation of murine norovirus, feline calicivirus, poliovirus, and MS2 as surrogates for human norovirus in a model of viral persistence in surface water and groundwater. Appl Environ Microbiol 74:477–484. https://doi.org/10.1128/AEM.02095-06

    Article  CAS  PubMed  Google Scholar 

  28. Hardy ME (2005) Norovirus protein structure and function. FEMS Microbiol Lett 253:1–8. https://doi.org/10.1016/j.femsle.2005.08.031

    Article  CAS  PubMed  Google Scholar 

  29. Sun Y, Roznowski AP, Tokuda JM et al (2017) Structural changes of tailless bacteriophage Φx174 during penetration of bacterial cell walls. Proc Natl Acad Sci USA 114:13708–13713. https://doi.org/10.1073/pnas.1716614114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cajthaml T (2015) Biodegradation of endocrine-disrupting compounds by ligninolytic fungi: mechanisms involved in the degradation. Environ Microbiol 17:4822–4834. https://doi.org/10.1111/1462-2920.12460

    Article  CAS  PubMed  Google Scholar 

  31. Okino LK, Machado KM, Fabris C, Bononi VL (2000) Ligninolytic activity of tropical rainforest basidiomycetes. World J Microbiol Biotechnol 16:889–893. https://doi.org/10.1023/A:1008983616033

    Article  CAS  Google Scholar 

  32. Ma XK, Li L, Peterson EC, Ruan T, Duan X (2015) The influence of naphthaleneacetic acid (NAA) and coumarin on flavonoid production by fungus Phellinus sp.: modeling of production kinetic profiles. Appl Microbiol Biotechnol 99:9417–9426. https://doi.org/10.1007/s00253-015-6824-6

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Yuan Z, Tan X, Ran Z, Jin H 2018 Optimization of medium components for the production of flavonoids and soluble protein with Phellinus igniarius in liquid culture. In: Liu H, Song C, Ram A (eds) Advances in applied biotechnology. Springer, Singapore, pp 421–431 https://doi.org/10.1007/978-981-10-4801-2_43

  34. Leyva JM, Pérez-Carlón JJ, González-Aguilar GA, Esqueda M, Ayala-Zavala JF (2013) Funcionalidad antibacteriana y antioxidante de extractos hidroalcohólicos de Phellinus merrillii. Rev Mex Micol 37:11–17. https://doi.org/10.33885/sf.2013.3.1108

    Article  Google Scholar 

  35. Li J-M, Liang H-Q, Qiao P, Su K-M, Liu P-G, Guo S-X, Chen J (2019) Chemical composition and antioxidant activity of Tuber indicum from different geographical regions of China. Chem Biodivers 16(3):e1800609. https://doi.org/10.1002/cbdv.201800609

    Article  CAS  PubMed  Google Scholar 

  36. Fogarasi M, Socaci SA, Dulf FV, Diaconeasa ZM, Fărcaș AC, Tofană M, Semeniuc CS (2018) Bioactive compounds and volatile profiles of five Transylvanian wild edible mushrooms. Molecules 23(12):3272. https://doi.org/10.3390/molecules23123272

    Article  CAS  PubMed Central  Google Scholar 

  37. Sułkowska-Ziaja K, Maślanka A, Szewczyk A, Muszyńska B (2017) Physiologically active compounds in four species of Phellinus. Nat Prod Commun 12:363–366. https://doi.org/10.1177/1934578X1701200313

    Article  PubMed  Google Scholar 

  38. Heleno SA, Martins A, Queiroz MJ, Ferreira IC (2015) Bioactivity of phenolic acids: Metabolites versus parent compounds: a review. Food Chem 173:501–513. https://doi.org/10.1016/j.foodchem.2014.10.057

    Article  CAS  PubMed  Google Scholar 

  39. Sheikh IA, Vyas D, Ganaie MA, Dehariya K, Singh V (2014) HPLC determination of phenolics and free radical scavenging activity of ethanolic extracts of two polypore mushrooms. Int J Pharm Pharm Sci 6:679–684

    CAS  Google Scholar 

  40. Deshpande S, Matei MF, Jaiswal R, Bassil BS, Kortz U, Kuhnert N (2016) Synthesis, structure, and tandem mass spectrometric characterization of the diastereomers of quinic acid. J Agric Food Chem 64:7298–7306. https://doi.org/10.1021/acs.jafc.6b02472

    Article  CAS  PubMed  Google Scholar 

  41. Nagy Á, Abrankó L (2016) Profiling of hydroxycinnamoylquinic acids in plant extracts using in-source CID fragmentation. J Mass Spectrom 51:1130–1145. https://doi.org/10.1002/jms.3847

    Article  CAS  PubMed  Google Scholar 

  42. Kabir F, Katayama S, Tanji N, Nakamura S (2014) Antimicrobial effects of chlorogenic acid and related compounds. J Korean Soc Appl Biol Chem 57:359–365. https://doi.org/10.1007/s13765-014-4056-6

    Article  CAS  Google Scholar 

  43. Borges A, Ferreira C, Saavedra M, Simões M (2013) Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist 19:256–265. https://doi.org/10.1089/mdr.2012.0244

    Article  CAS  PubMed  Google Scholar 

  44. Bernal-Mercado AT, Gutierrez-Pacheco MM, Encinas-Basurto D et al (2020) Synergistic mode of action of catechin, vanillic and protocatechuic acids to inhibit the adhesion of uropathogenic Escherichia coli on silicone surfaces. J Appl Microbiol 128:387–400. https://doi.org/10.1111/jam.14472

    Article  CAS  PubMed  Google Scholar 

  45. Wu T, Zang X, He M, Pan S, Xu X (2013) Structure–activity relationship of flavonoids on their anti-Escherichia coli activity and inhibition of DNA gyrase. J Agric Food Chem 61:8185–8190. https://doi.org/10.1021/jf402222v

    Article  CAS  PubMed  Google Scholar 

  46. Wu D, Kong Y, Han C et al (2008) D-Alanine: D-alanine ligase as a new target for the flavonoids quercetin and apigenin. Int J Antimicrob Agents 32:421–426. https://doi.org/10.1016/j.ijantimicag.2008.06.010

    Article  CAS  PubMed  Google Scholar 

  47. Bernard FX, Sable S, Cameron B et al (1997) Glycosylated flavones as selective inhibitors of topoisomerase IV. Antimicrob Agents Chemother 41:992–998. https://doi.org/10.1128/AAC.41.5.992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Blanco P, Hernando-Amado S, Reales-Calderon JA et al (2016) Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms 4:1–19. https://doi.org/10.3390/microorganisms4010014

    Article  CAS  Google Scholar 

  49. Fiamegos YC, Kastritis PL, Exarchou V et al (2011) Antimicrobial and efflux pump inhibitory activity of caffeoylquinic acids from Artemisia absinthium against Gram-positive pathogenic bacteria. PLoS ONE 6:e18127. https://doi.org/10.1371/journal.pone.0018127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miguel MG, Faleiro L, Antunes MD, Aazza S, Duarte J, Silvério AR (2013) Antimicrobial, antiviral and antioxidant activities of “água-mel” from Portugal. Food Chem Toxicol 56:136–144. https://doi.org/10.1016/j.fct.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  51. Gescher K, Hensel A, Hafezi W, Derksen A, Kühn J (2011) Oligomeric proanthocyanidins from Rumex acetosa L. inhibit the attachment of herpes simplex virus type-1. Antiviral Res 89:9–18. https://doi.org/10.1016/j.antiviral.2010.10.007

    Article  CAS  PubMed  Google Scholar 

  52. Doğan HH, Karagöz S, Duman R (2018) In vitro evaluation of the antiviral activity of some mushrooms from Turkey. Int J Med Mushrooms 20:201–212. https://doi.org/10.1615/IntJMedMushrooms.2018025468

    Article  PubMed  Google Scholar 

  53. Krupodorova T, Rybalko S, Barshteyn V (2014) Antiviral activity of Basidiomycete mycelia against influenza type A (serotype H1N1) and herpes simplex virus type 2 in cell culture. Virol Sin 29:284–290. https://doi.org/10.1007/s12250-014-3486-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee S, Kim JI, Heo J et al (2013) The anti-influenza virus effect of Phellinus igniarius extract. J Microbiol 51:676–681. https://doi.org/10.1007/s12275-013-3384-2

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Mexican Council for Science and Technology CONACYT (Project number CB-2008-01-103105) for their financial support.

Funding

Consejo Nacional de Ciencia y Tecnología, CB-2008-01-103105, Jesus Fernando Ayala-Zavala

Author information

Authors and Affiliations

Authors

Contributions

FJVA: conceptualization, data curation, formal analysis, investigation, methodology, writing—original draft, writing—review and editing. JML: investigation, writing—review and editing. VMH: funding acquisition, supervision, writing—review and editing. GAGA: funding acquisition, supervision, writing—review and editing. MRCV: formal analysis, funding acquisition, writing—review and editing. ME: funding acquisition, supervision, writing—review and editing. AG: funding acquisition, investigation, writing—review and editing. FN: formal analysis, funding acquisition, investigation, writing—review and editing. FF: formal analysis, investigation, writing—review and editing. RGH: formal analysis, visualization, writing—review and editing. JFAZ: Conceptualization, funding acquisition, project administration, resources, supervision, validation, visualization, writing—review and editing. All authors discussed and agreed with the submitted version of the manuscript.

Corresponding author

Correspondence to J. Fernando Ayala-Zavala.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors consent for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Melissa Fontes Landell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vazquez-Armenta, F.J., Leyva, J.M., Mata-Haro, V. et al. Phenolic compounds of Phellinus spp. with antibacterial and antiviral activities. Braz J Microbiol 53, 1187–1197 (2022). https://doi.org/10.1007/s42770-022-00745-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00745-x

Keywords

Navigation