Skip to main content

Advertisement

Log in

FLO8 deletion leads to decreased adhesion and virulence with downregulated expression of EPA1, EPA6, and EPA7 in Candida glabrata

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Background

The Candida glabrata does not develop into a pathogenic hiphal form; however, it has become the second most common pathogen of fungal infections in humans, partly because of its adhesion ability and virulence.

Objectives

The present study aimed to determine whether Flo8, a transcription factor that plays an important role in the virulence and drug resistance in Candida albicans, has a similar role in C. glabrata.

Methods

We constructed FLO8 null strains of a C. glabrata standard strain and eight clinical strains from different sources, and a FLO8 complemented strain. Real-time quantitative PCR, biofilm formation assays, hydrophobicity tests, adhesion tests, Caenorhabditis elegans survival assay, and drug-susceptibility were then performed.

Results

Compared with the wild-type strains, the biofilm formation, hydrophobicity, adhesion, and virulence of the FLO8-deficient strains decreased, accompanied by decreased expression of EPA1, EPA6, and EPA7. On the other hand, it showed no changes in antifungal drug resistance, although the expression levels of CDR1, CDR2, and SNQ2 increased after FLO8 deletion.

Conclusions

These results indicated that Flo8 is involved in the adhesion and virulence of C. glabrata, with FLO8 deletion leading to decreased expression of EPA1, EPA6, and EPA7 and decreased biofilm formation, hydrophobicity, adhesion, and virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Valotteau C, Prystopiuk V, Cormack BP, Dufrene YF (2019) Atomic force microscopy demonstrates that candida glabrata uses three Epa proteins to mediate adhesion to abiotic surfaces. Msphere 4(3):e00277-e319. https://doi.org/10.1128/mSphere.00277-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Goncalves B, Ferreira C, Alves CT, Henriques M, Azeredo J, Silva S (2016) Vulvovaginal candidiasis: epidemiology, microbiology and risk factors. Crit Rev Microbiol 42(6):905–927. https://doi.org/10.3109/1040841x.2015.1091805

    Article  CAS  PubMed  Google Scholar 

  3. Guinea J (2014) Global trends in the distribution of Candida species causing candidemia. Clin Microbiol Infect 20(Suppl 6):5–10. https://doi.org/10.1111/1469-0691.12539

    Article  PubMed  Google Scholar 

  4. Andes DR, Safdar N, Baddley JW, Alexander B, Brumble L, Freifeld A, Hadley S, Herwaldt L, Kauffman C, Lyon GM, Morrison V, Patterson T, Perl T, Walker R, Hess T, Chiller T, Pappas PG, Investigators T (2016) The epidemiology and outcomes of invasive Candida infections among organ transplant recipients in the United States: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Transpl Infect Dis 18(6):921–931. https://doi.org/10.1111/tid.12613

    Article  PubMed  Google Scholar 

  5. Cleveland AA, Harrison LH, Farley MM, Hollick R, Stein B, Chiller TM, Lockhart SR, Park BJ (2015) Declining incidence of candidemia and the shifting epidemiology of candida resistance in two US metropolitan areas, 2008–2013: results from population-based surveillance. PLoS ONE.10(3). https://doi.org/10.1371/journal.pone.0120452

  6. Krcmery V, Barnes AJ (2002) Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect. 50(4):243–260. https://doi.org/10.1053/jhin.2001.1151

    Article  CAS  PubMed  Google Scholar 

  7. Desai C, Mavrianos J, Chauhan N (2011) Candida glabrata Pwp7p and Aed1p are required for adherence to human endothelial cells. FEMS Yeast Res 11(7):595–601. https://doi.org/10.1111/j.1567-1364.2011.00743.x

    Article  CAS  PubMed  Google Scholar 

  8. Sinnott JTt, Cullison JP, Sweeney MP (1987) Candida (Torulopsis) glabrata. Infection control : IC. 8(8):334–336. https://doi.org/10.1017/s0195941700066443

    Article  Google Scholar 

  9. Galocha M, Pais P, Cavalheiro M, Pereira D, Viana R, Teixeira MC (2019) Divergent approaches to virulence in C. albicans and C. glabrata: two sides of the same coin. Int J Mol Sci.20(9). https://doi.org/10.3390/ijms20092345

  10. Rodrigues CF, Silva S, Henriques M (2014) Candida glabrata: a review of its features and resistance. Eur J Clin Microbiol Infect Dis 33(5):673–688. https://doi.org/10.1007/s10096-013-2009-3

    Article  CAS  PubMed  Google Scholar 

  11. Timmermans B, De las Penas A, Castano I, Van Dijck P (2018) Adhesins in Candida glabrata. Journal of Fungi 4(2). https://doi.org/10.3390/jof4020060

  12. Castano I, Pan SJ, Zupancic M, Hennequin C, Dujon B, Cormack BP (2005) Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol Microbiol 55(4):1246–1258. https://doi.org/10.1111/j.1365-2958.2004.04465.x

    Article  CAS  PubMed  Google Scholar 

  13. Kobayashi O, Suda H, Ohtani T, Sone H (1996) Molecular cloning and analysis of the dominant flocculation gene FLO8 from Saccharomyces cerevisiae. Mol Gen Genet 251(6):707–715. https://doi.org/10.1007/s004380050220

    Article  CAS  PubMed  Google Scholar 

  14. Cao F, Lane S, Raniga PP, Lu Y, Zhou Z, Ramon K, Chen JY, Liu HP (2006) The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Mol Biol Cell 17(1):295–307. https://doi.org/10.1091/mbc.E05-06-0502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fox EP, Bui CK, Nett JE, Hartooni N, Mui MC, Andes DR, Nobile CJ, Johnson AD (2015) An expanded regulatory network temporally controls Candida albicans biofilm formation. Mol Microbiol 96(6):1226–1239. https://doi.org/10.1111/mmi.13002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li W-J, Liu J-Y, Shi C, Zhao Y, Meng L-n, Wu F, Xiang M-J (2019) FLO8 deletion leads to azole resistance by upregulating CDR1 and CDR2 in Candida albicans. Res Microbiol 170(6–7):272–279. https://doi.org/10.1016/j.resmic.2019.08.005

    Article  CAS  PubMed  Google Scholar 

  17. Tian Y, Gao N, Ni Q, Mao Y, Dong D, Huang X, Jiang C, Li Z, Zhang L, Wang X, Peng Y, Chen C (2018) Sequence modification of the master regulator Pdr1 interferes with its transcriptional autoregulation and confers altered azole resistance in Candida glabrata. FEMS Yeast Res.18(4). https://doi.org/10.1093/femsyr/foy038

  18. Liu J-Y, Li W-J, Shi C, Wang Y, Zhao Y, Xiang M-J (2015) Mutations in the Flo8 transcription factor contribute to virulence and phenotypic traits in Candida albicans strains. Microbiol Res 178:1–8. https://doi.org/10.1016/j.micres.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  19. Castano I, Kaur R, Pan SJ, Cregg R, De Las PA, Guo NN, Biery MC, Craig NL, Cormack BP (2003) Tn7-based genome-wide random insertional mutagenesis of Candida glabrata. Genome Res 13(5):905–915. https://doi.org/10.1101/gr.848203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu J, Luo Q, Liu J, Chen X, Liu L (2018) Enhanced pyruvate production in Candida glabrata by overexpressing the CgAMD1 gene to improve acid tolerance. Biotechnol Lett 40(1):143–149. https://doi.org/10.1007/s10529-017-2452-9

    Article  CAS  PubMed  Google Scholar 

  21. Kottom TJ, Limper AH (2016) Evidence for a Pneumocystis carinii Flo8-like transcription factor: insights into organism adhesion. Med Microbiol Immunol 205(1):73–84. https://doi.org/10.1007/s00430-015-0428-8

    Article  CAS  PubMed  Google Scholar 

  22. Del Rio M, de la Canal L, Pinedo M, Mora-Montes HM, Regente M (2019) Effects of the binding of a Helianthus annuus lectin to Candida albicans cell wall on biofilm development and adhesion to host cells. Phytomedicine 58. https://doi.org/10.1016/j.phymed.2019.152875

  23. Ni Q, Wang C, Tian Y, Dong D, Jiang C, Mao E, Peng Y (2018) CgPDR1 gain-of-function mutations lead to azole-resistance and increased adhesion in clinical Candida glabrata strains. Mycoses 61(7):430–440. https://doi.org/10.1111/myc.12756

    Article  CAS  PubMed  Google Scholar 

  24. Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E (2007) Antifungal chemical compounds identified using a C-elegans pathogenicity assay. PLoS Pathog 3(2):168–178. https://doi.org/10.1371/journal.ppat.0030018

    Article  CAS  Google Scholar 

  25. Cordeiro RdA, de Jesus Evangelista AJ, Serpa R, Colares de Andrade AR, Leite Mendes PB, Franco JdS, de Oliveira JS, de Alencar LP, Sales JA, Carneiro Camara LM, Collares Maia Castelo-Branco DdS, Nogueira Brilhante RS, Costa Sidrim JJ, Gadelha Rocha MF (2018) beta-lactam antibiotics & vancomycin increase the growth & virulence of Candida spp. Future Microbiol 13(8):869–875. https://doi.org/10.2217/fmb-2018-0019

    Article  CAS  Google Scholar 

  26. Institute CaLS (2008) Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. In: CLSI Document M27-A3, Clinical and Laboratory Standards Institute: Wayne.

  27. De las Penas A, Pan SJ, Castano I, Alder J, Cregg R, Cormack BP (2003) Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 17(18):2245–2258. https://doi.org/10.1101/gad.1121003

    Article  CAS  Google Scholar 

  28. Cormack BP, Ghori N, Falkow S (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285(5427):578–582. https://doi.org/10.1126/science.285.5427.578

    Article  CAS  PubMed  Google Scholar 

  29. Domergue R, Castano I, De las Penas A, Zupancic M, Lockatell V, Hebel JR, Johnson D, Cormack BP (2005) Nicotinic acid limitation regulates silencing of Candida adhesins during UTI. Science. 308(5723):866–870. https://doi.org/10.1126/science.1108640

    Article  CAS  PubMed  Google Scholar 

  30. Zupancic ML, Frieman M, Smith D, Alvarez RA, Cummings RD, Cormack BP (2008) Glycan microarray analysis of Candida glabrata adhesin ligand specificity. Mol Microbiol 68(3):547–559. https://doi.org/10.1111/j.1365-2958.2008.06184.x

    Article  CAS  PubMed  Google Scholar 

  31. Kraneveld EA, de Soet JJ, Deng DM, Dekker HL, de Koster CG, Klis FM, Crielaard W, de Groot PWJ (2011) Identification and differential gene expression of adhesin-like wall proteins in Candida glabrata biofilms. Mycopathologia 172(6):415–427. https://doi.org/10.1007/s11046-011-9446-2

    Article  CAS  PubMed  Google Scholar 

  32. Gomez-Molero E, de Boer AD, Dekker HL, Moreno-Martinez A, Kraneveld EA, Ichsan, Chauhan N, Weig M, de Soet JJ, de Koster CG, Bader O, de Groot PWJ (2015) Proteomic analysis of hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential incorporation of adhesins. FEMS Yeast Res 15(8). https://doi.org/10.1093/femsyr/fov098

  33. Santos R, Costa C, Mil-Homens D, Romao D, de Carvalho CCCR, Pais P, Mira NP, Fialho AM, Teixeira MC (2017) The multidrug resistance transporters CgTpo1_1 and CgTpo1_2 play a role in virulence and biofilm formation in the human pathogen Candida glabrata. Cell Microbiol 19(5). https://doi.org/10.1111/cmi.12686

  34. Kucharikova S, Tournu H, Lagrou K, Van Dijck P, Bujdakova H (2011) Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. J Med Microbiol 60(9):1261–1269. https://doi.org/10.1099/jmm.0.032037-0

    Article  CAS  PubMed  Google Scholar 

  35. Teresa Blanco M, Sacristan B, Lucio L, Blanco J, Perez-Giraldo C, Candido Gomez-Garcia A (2010) Cell surface hydrophobicity as an indicator of other virulence factors in Candida albicans. Rev Iberoam Micol 27(4):195–199. https://doi.org/10.1016/j.riam.2010.09.001

    Article  Google Scholar 

  36. Van Mulders SE, Christianen E, Saerens SMG, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR (2009) Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 9(2):178–190. https://doi.org/10.1111/j.1567-1364.2008.00462.x

    Article  CAS  PubMed  Google Scholar 

  37. Liu H, Styles CA, Fink GR (1996) Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144(3):967–978

    Article  CAS  Google Scholar 

  38. Mundy RD, Cormack B (2009) Expression of Candida glabrata adhesins after exposure to chemical preservatives. J Infect Dis 199(12):1891–1898. https://doi.org/10.1086/599120

    Article  CAS  PubMed  Google Scholar 

  39. Su C, Li Y, Lu Y, Chen J (2009) Mss11, a transcriptional activator, is required for hyphal development in Candida albicans. Eukaryot Cell 8(11):1780–1791. https://doi.org/10.1128/EC.00190-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim TS, Kim HY, Yoon JH, Kang HS (2004) Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression. Mol Cell Biol 24(21):9542–9556. https://doi.org/10.1128/MCB.24.21.9542-9556.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [#81871706], Shanghai Municipal Health and Family Planning Commission [#201840227] and [#201740069], Natural Science Foundation of Shanghai [#15ZR1426900], the Program of Shanghai Key Specialty [#ZK2012A21], and Excellent Youth of HuangPu District of Shanghai [#RCPY1407].

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Jun-Tao Zhao and Ming-Jie Xiang; Methodology: Jun-Tao Zhao and Jin-Yan Liu; Formal analysis and investigation: Jun-Tao Zhao, Ke-Zhi Chen, Yu-Zhu Wang, and Lu-Ling Wang; Writing—original draft preparation: Jun-Tao Zhao; Writing—review and editing: Jin-Yan Liu and Ke-Zhi Chen; Funding acquisition: Ming-Jie Xiang; Resources: Ming-Jie Xiang and Wei-Hua Li; Supervision: Ming-Jie Xiang and Jin-Yan Liu.

Corresponding author

Correspondence to Ming-Jie Xiang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Rosana Puccia

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors Jun-Tao Zhao, Ke-Zhi Chen, and Jin-Yan Liu share first authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, JT., Chen, KZ., Liu, JY. et al. FLO8 deletion leads to decreased adhesion and virulence with downregulated expression of EPA1, EPA6, and EPA7 in Candida glabrata. Braz J Microbiol 53, 727–738 (2022). https://doi.org/10.1007/s42770-022-00703-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00703-7

Keywords

Navigation