Skip to main content
Log in

Quorum Sensing and Biofilm Disrupting Potential of Imidazole Derivatives in Chromobacterium violaceum Using Antimicrobial and Drug Discovery Approaches

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Population of drug-resistant bacteria have increased at an alarming rate in the past few decades. The major reason for increasing drug resistance is the lack of new antibiotics and limited drug targets. It has therefore been a vital task to develop new antibiotics with different drug targets. Two such targets are biofilm formation and quorum sensing. Quorum sensing is cell to cell communication used by bacteria that initiates many important survival processes and aids in establishing pathogenesis. Both biofilm and quorum sensing are inter-related processes and play a major role in physiological and pathogenesis processes. In this study, five novel imidazole derivatives (IMA-1–IMA-5) were synthesised and tested for their antibacterial and anti-quorum sensing activities against Chromobacterium violaceum using different in silico and in vitro techniques following the standard protocols. In silico results revealed that all compounds were able to effectively bind to and interact sufficiently with the target protein CviR. CviR is a protein to which autoinducers bind to initiate the quorum sensing process. In silico results also revealed that the compounds generated favourable structural dynamics implying that the compounds would be able to effectively bind to CviR and inhibit quorum sensing. Susceptibility results revealed that IMA-1 is the most active of all the derivatives against both planktonic cells and biofilms. Qualitative and quantitative evaluation of anti-quorum sensing activity at sub-inhibitory concentrations of these compounds also revealed high activity for IMA-1. Down-regulation of most of the quorum sensing genes when cells were treated with the test compounds affirmed the high anti-quorum sensing activities of these compounds. The results from this study are promising and urges on the use of anti-quorum sensing and biofilm disrupting molecules to combat multi-drug resistance problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Aminov RI (2010) A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the Future. Front Microbiol 1. https://doi.org/10.3389/fmicb.2010.00134

  2. Ahmad A, Viljoen AM, Chenia HY (2015) The impact of plant volatiles on bacterial quorum sensing. Lett Appl Microbiol 60:8–19. https://doi.org/10.1111/lam.12343

    Article  CAS  PubMed  Google Scholar 

  3. Martínez OF, Cardoso MH, Ribeiro SM, Franco OL (2019) Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Infect Microbiol 9. https://doi.org/10.3389/fcimb.2019.00074

  4. Lewis K (2017) New approaches to antimicrobial discovery. Biochem Pharmacol 134:87–98. https://doi.org/10.1016/j.bcp.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  5. Yoo SM, Lee SY (2016) Optical Biosensors for the Detection of Pathogenic Microorganisms. Trends Biotechnol 34:7–25. https://doi.org/10.1016/j.tibtech.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  6. Abbas HA, Elsherbini AM, Shaldam MA (2017) Repurposing metformin as a quorum sensing inhibitor in Pseudomonas aeruginosa. Afr Health Sci 17:808–819. https://doi.org/10.4314/ahs.v17i3.24

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhuang X, Zhang A, Chu W (2019) Anti-quorum sensing activity of Forsythia suspense extract against Chromobacterium violaceum by targeting CviR receptor. Int Microbiol 1–10. https://doi.org/10.1007/s10123-019-00091-3

  8. Bodede O, Shaik S, Chenia H, Singh P, Moodley R (2018) Quorum sensing inhibitory potential and in silico molecular docking of flavonoids and novel terpenoids from Senegalia nigrescens. J Ethnopharmacol 216:134–146. https://doi.org/10.1016/j.jep.2018.01.031

    Article  CAS  PubMed  Google Scholar 

  9. Castillo-Juárez I, Maeda T, Mandujano-Tinoco EA, Tomás M, Pérez-Eretza B, García-Contreras SJ, Wood TK, García-Contreras R (2015) Role of quorum sensing in bacterial infections. World J Clin Cases 3:575. https://doi.org/10.12998/wjcc.v3.i7.575

    Article  PubMed  PubMed Central  Google Scholar 

  10. Poli J-P, Guinoiseau E, de Rocca SD, Sutour S, Paoli M, Tomi F, Quilichini Y, Berti L, Lorenzi V (2018) Anti-Quorum Sensing Activity of 12 Essential Oils on Chromobacterium violaceum and Specific Action of cis-cis-p-Menthenolide from Corsican Mentha suaveolens ssp. Insularis Molecules 23:2125. https://doi.org/10.3390/molecules23092125

    Article  CAS  Google Scholar 

  11. Williams P (2017) Strategies for inhibiting quorum sensing. Emerg Top Life Sci 1:23–30. https://doi.org/10.1042/etls20160021

    Article  CAS  PubMed  Google Scholar 

  12. Stauff DL, Bassler BL (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor. J Bacteriol 193:3871–3878. https://doi.org/10.1128/JB.05125-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Evans KC, Benomar S, Camuy-Vélez LA, Nasseri EB, Wang X, Neuenswander B, Chandler JR (2018) Quorum-sensing control of antibiotic resistance stabilizes cooperation in Chromobacterium violaceum. ISME J 12:1263–1272. https://doi.org/10.1038/s41396-018-0047-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Slassi S, Aarjane M, Yamni K, Amine A (2019) Synthesis, crystal structure, DFT calculations, Hirshfeld surfaces, and antibacterial activities of schiff base based on imidazole. J Mol Struct 1197:547–554. https://doi.org/10.1016/j.molstruc.2019.07.071

    Article  CAS  Google Scholar 

  15. Brooks BD, Brooks AE (2014) Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev 78:14–27. https://doi.org/10.1016/j.addr.2014.10.027

    Article  CAS  PubMed  Google Scholar 

  16. Tung TT, Jakobsen TH, Dao TT, Fuglsang AT, Givskov M, Christensen SB, Nielsen J (2017) Fusaric acid and analogues as Gram-negative bacterial quorum sensing inhibitors. Eur J Med Chem 126:1011–1020. https://doi.org/10.1016/j.ejmech.2016.11.044

    Article  CAS  PubMed  Google Scholar 

  17. Baloyi IT, Cosa S, Combrinck S, Leonard CM, Viljoen AM (2019) Anti-quorum sensing and antimicrobial activities of South African medicinal plants against uropathogens. South African J Bot 122:484–491. https://doi.org/10.1016/j.sajb.2019.01.010

    Article  CAS  Google Scholar 

  18. Ghosh R, Tiwary BK, Kumar A, Chakraborty R (2014) Guava Leaf Extract Inhibits Quorum-Sensing and Chromobacterium violaceum Induced Lysis of Human Hepatoma Cells: Whole Transcriptome Analysis Reveals Differential Gene Expression. PLoS ONE 9:e107703. https://doi.org/10.1371/journal.pone.0107703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Remuzgo-Martínez S, Lázaro-Díez M, Mayer C, Aranzamendi-Zaldumbide M, Padilla D, Calvo J, Marco F, Martínez-Martínez L, Icardo JM, Otero A, Ramos-Vivasa J (2015) Biofilm formation and quorum-sensing-molecule production by clinical isolates of Serratia liquefaciens. Appl Environ Microbiol 81:3306–3315. https://doi.org/10.1128/AEM.00088-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Saeki EK, Kosbayashi RKT, Nakazato G (2020) Quorum sensing system: Target to control the spread of bacterial infections. Microb Pathog 142. https://doi.org/10.1016/j.micpath.2020.104068

  21. Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A (2020) Inhibition of Bacterial Biofilm Formation. In: Bacterial Biofilms [Working Title]. IntechOpen

  22. Bukhari SI, Aleanizy FS (2019) Association of OprF mutant and disturbance of biofilm and pyocyanin virulence in Pseudomonas aeruginosa. Saudi Pharm J. https://doi.org/10.1016/j.jsps.2019.11.021

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kirui DK, Weber G, Talackine J, Millenbaugh NJ (2019) Targeted laser therapy synergistically enhances efficacy of antibiotics against multi-drug resistant Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Nanomedicine Nanotechnology, Biol Med 20. https://doi.org/10.1016/j.nano.2019.102018

  24. Devescovi G, Kojic M, Covaceuszach S, Cámara M, Williams P, Bertani I, Subramoni S, Venturi V (2017) Negative Regulation of Violacein Biosynthesis in Chromobacterium violaceum. Front Microbiol 8:349. https://doi.org/10.3389/fmicb.2017.00349

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kamaeva AA, Vasilchenko AS, Deryabin DG (2014) Atomic Force Microscopy Reveals a Morphological Differentiation of Chromobacterium violaceum Cells Associated with Biofilm Development and Directed by N-Hexanoyl-L-Homoserine Lactone. PLoS ONE 9:e103741. https://doi.org/10.1371/journal.pone.0103741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Giedraitienė A, Vitkauskienė A, Naginienė R, Pavilonis A (2011) Antibiotic Resistance Mechanisms of Clinically Important Bacteria. Medicina (B Aires) 47:19. https://doi.org/10.3390/medicina47030019

    Article  Google Scholar 

  27. Burt SA, Ojo-Fakunle VTA, Woertman J, Veldhuizen EJA (2014) The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One 9. https://doi.org/10.1371/journal.pone.0093414

  28. Kerekes E-B, Deák É, Takó M, Tserennadmid R, Petkovits T, Vágvölgyi C, Krisch J (2013) Anti-biofilm forming and anti-quorum sensing activity of selected essential oils and their main components on food-related micro-organisms. J Appl Microbiol n/a-n/a. https://doi.org/10.1111/jam.12289

    Article  Google Scholar 

  29. Gaba M, Mohan C (2016) Development of drugs based on imidazole and benzimidazole bioactive heterocycles: Recent advances and future directions. Med Chem Res 25:173–210. https://doi.org/10.1007/s00044-015-1495-5

    Article  CAS  Google Scholar 

  30. Beheshti A, Hashemi F, Monavvar MF, Khorrmdin R, Abrahams CT, Motamedi H, Shakerzadeh E (2017) Synthesis, structural characterization, antibacterial activity, DNA binding and computational studies of bis(2-methyl-1H-imidazole κN3)silver(I)dichromate(VI). J Mol Struct 1133:591–606. https://doi.org/10.1016/j.molstruc.2016.11.064

    Article  CAS  Google Scholar 

  31. De Vita D, Angeli A, Pandolfi F, Bortolami M, Costi R, Di Santo R, Suffredini E, Ceruso M, Del Prete S, Capasso C, Scipione L, Supuran CT (2017) Inhibition of the α-carbonic anhydrase from Vibrio cholerae with amides and sulfonamides incorporating imidazole moieties. J Enzyme Inhib Med Chem 32:798–804. https://doi.org/10.1080/14756366.2017.1327522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gaba M, Singh S, Mohan C (2014) Benzimidazole: an emerging scaffold for analgesic and anti- inflammatory agents. Eur J Med Chem 76:494–505. https://doi.org/10.1016/j.ejmech.2014.01.030

    Article  CAS  PubMed  Google Scholar 

  33. Srivastava V, Wani MY, Al-Bogami AS, Ahmad A (2020) Piperidine based 1,2,3-triazolylacetamide derivatives induce cell cycle arrest and apoptotic cell death in Candida auris. J Adv Res. https://doi.org/10.1016/j.jare.2020.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  34. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J Chem Theory Comput 12:281–296. https://doi.org/10.1021/acs.jctc.5b00864

    Article  CAS  PubMed  Google Scholar 

  35. Khan S, Bjij I, Soliman MES (2019) Selective Covalent Inhibition of “Allosteric Cys121” Distort the Binding of PTP1B Enzyme: A Novel Therapeutic Approach for Cancer Treatment. Cell Biochem Biophys 77:203–211. https://doi.org/10.1007/s12013-019-00882-5

    Article  CAS  PubMed  Google Scholar 

  36. LigPrep | Schrödinger. https://www.schrodinger.com/ligprep. Accessed 11 Nov 2020

  37. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J Med Chem 47:1739–1749. https://doi.org/10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  38. Yang C, Geng T, Wang T, Patel R, Xiong Q, Sanaullah A, Wu C, Sheng J, Lin C, Sachdeva V, Sherman W, Herbordt M (2019) Fully integrated FPGA molecular dynamics simulations. Int Conf High Perform Comput Networking, Storage Anal SC 1–31. https://doi.org/10.1145/3295500.3356179

  39. Gupta P, Khan S, Fakhar Z, Hussain A, Rehman MT, Alajmi MF, Islam A, Ahmad F, Hassan MI (2020) Identification of Potential Inhibitors of Calcium/Calmodulin-Dependent Protein Kinase IV from Bioactive Phytoconstituents. Oxid Med Cell Longev 2020. https://doi.org/10.1155/2020/2094635

  40. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095. https://doi.org/10.1021/ct400341p

    Article  CAS  PubMed  Google Scholar 

  41. Seifert E (2014) OriginPro 9.1 Scientific data analysis and graphing software - Software review. J Chem Inf Model 54:1552. https://doi.org/10.1021/ci500161d

    Article  CAS  PubMed  Google Scholar 

  42. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  43. Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, Hou T (2019) End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chem Rev 119:9478–9508

    Article  CAS  Google Scholar 

  44. Gohlke H, Kiel C, Case DA (2003) Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol 330:891–913. https://doi.org/10.1016/S0022-2836(03)00610-7

    Article  CAS  PubMed  Google Scholar 

  45. Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20:217–230. https://doi.org/10.1002/(SICI)1096-987X(19990130)20:2%3c217::AID-JCC4%3e3.0.CO;2-A

    Article  CAS  Google Scholar 

  46. Valones MAA, Guimarães RL, Brandão LAC, de Souza PRE, de Albuquerque Tavares Carvalho A, Crovela S, (2009) Principles and applications of polymerase chain reaction in medical diagnostic fields: a review. Braz J Microbiol 40:1–11. https://doi.org/10.1590/S1517-83822009000100001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ravichandran V, Zhong L, Wang H, Yu G, Zhang Y, Li A (2018) Virtual screening and biomolecular interactions of CviR-based quorum sensing inhibitors against Chromobacterium violaceum. Front Cell Infect Microbiol 8. https://doi.org/10.3389/fcimb.2018.00292

  48. Batohi N, Lone SA, Marimani M, Wani MY, Al-Bogami AS, Ahmad A (2021) Citral and its derivatives inhibit quorum sensing and biofilm formation in Chromobacterium violaceum. Arch Microbiol 1:3. https://doi.org/10.1007/s00203-020-02127-z

    Article  CAS  Google Scholar 

  49. Lone SA, Khan S, Ahmad A (2019) Inhibition of ergosterol synthesis in Candida albicans by novel eugenol tosylate congeners targeting sterol 14α-demethylase (CYP51) enzyme. Arch Microbiol. https://doi.org/10.1007/s00203-019-01781-2

    Article  PubMed  Google Scholar 

  50. Martins FG, Melo A, Sousa SF (2021) Identification of new potential inhibitors of quorum sensing through a specialized multi-level computational approach. Molecules 26:2600. https://doi.org/10.3390/molecules26092600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gnanendra S, Anusuya S, Natarajan J (2012) Molecular modeling and active site analysis of SdiA homolog, a putative quorum sensor for Salmonella typhimurium pathogenecity reveals specific binding patterns of AHL transcriptional regulators. J Mol Model 18:4709–4719. https://doi.org/10.1007/s00894-012-1469-1

    Article  CAS  PubMed  Google Scholar 

  52. Deep A, Chaudhary U, Gupta V (2011) Quorum sensing and Bacterial Pathogenicity: From Molecules to Disease. J Lab Physicians 3:004–011. https://doi.org/10.4103/0974-2727.78553

    Article  CAS  Google Scholar 

  53. Grant SS, Hung DT (2013) Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 4:273–283. https://doi.org/10.4161/viru.23987

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hassan MA, Tamer TM, Rageh AA, Abou-Zeid AM, Abd El-Zaher EHF, Kenawy ER (2019) Insight into multidrug-resistant microorganisms from microbial infected diabetic foot ulcers. Diabetes Metab Syndr Clin Res Rev 13:1261–1270. https://doi.org/10.1016/j.dsx.2019.01.044

    Article  Google Scholar 

  55. Asfour H (2018) Anti-quorum sensing natural compounds. J Microsc Ultrastruct 6:1. https://doi.org/10.4103/jmau.jmau_10_18

    Article  PubMed  PubMed Central  Google Scholar 

  56. Zhao X, Liu X, Xu X, Fu YV (2017) Microbe social skill: the cell-to-cell communication between microorganisms. Sci Bull 62:516–524. https://doi.org/10.1016/j.scib.2017.02.010

    Article  CAS  Google Scholar 

  57. Hossain MA, Lee SJ, Park NH, Mechesso AF, Birhanu BT, Kang J, Reza MA, Suh JW, Park SC (2017) Impact of phenolic compounds in the acyl homoserine lactone-mediated quorum sensing regulatory pathways. Sci Rep 7:1–16. https://doi.org/10.1038/s41598-017-10997-5

    Article  CAS  Google Scholar 

  58. Zhao X, Yu Z, Ding T (2020) Quorum sensing regulation of antimicrobial resistance in bacteria. Microorganisms 8:425. https://doi.org/10.3390/microorganisms8030425

    Article  CAS  PubMed Central  Google Scholar 

  59. Heerding DA, Chan G, DeWolf WE, Fosberry AP, Janson CA, Jaworski DD, McManus E, Miller WH, Moore TD, Payne DJ, Qiu X, Rittenhouse SF, Slater-Radosti C, Smith W, Takata DT, Vaidya KS, Yuan CCK, Huffman WF (2001) 1, 4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier protein reductase (FabI). Bioorganic Med Chem Lett 11:2061–2065. https://doi.org/10.1016/S0960-894X(01)00404-8

    Article  CAS  Google Scholar 

  60. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588. https://doi.org/10.1038/nrmicro.2016.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. De Lima PA, Chiaradia-Delatorre LD, Mascarello A, De Oliveira KA, Leal PC, Yunes RA, De Aguiar CBNM, Tasca CI, Nunes RJ, Smânia A (2013) Synthetic organic compounds with potential for bacterial biofilm inhibition, a path for the identification of compounds interfering with quorum sensing. Int J Antimicrob Agents 42:519–523. https://doi.org/10.1016/j.ijantimicag.2013.07.006

    Article  CAS  Google Scholar 

  62. Liu Z, Wang W, Zhu Y, Gong Q, Yu W, Lu X (2013) Antibiotics at subinhibitory concentrations improve the quorum sensing behavior of Chromobacterium violaceum. FEMS Microbiol Lett 341:37–44. https://doi.org/10.1111/1574-6968.12086

    Article  CAS  PubMed  Google Scholar 

  63. Kothari V, Sharma S, Padia D (2017) Recent research advances on Chromobacterium violaceum. Asian Pac J Trop Med 10:744–752. https://doi.org/10.1016/j.apjtm.2017.07.022

    Article  PubMed  Google Scholar 

Download references

Funding

AA acknowledges grant support from the South African National Research Foundation (NRF) Research Development Grant for Y-Rated Researchers (RDYR180418322304; Grant No: 116339) and University Research Committee Grant for 2019—Friedel Sellschop Award (Grant No: AZMD019).

Author information

Authors and Affiliations

Authors

Contributions

AA, MYW, and SK designed the study. MYW, FA, and AAB performed the chemistry experiments. MT conducted the in vitro and in silico studies. MT, MYW, and FA wrote the manuscript’s. AA, AAB, and SK edited and approved the final manuscript. AA supervised the project and contributed to the reagents and bioinformatic tools. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mohmmad Younus Wani or Aijaz Ahmad.

Ethics declarations

Ethics Approval

Ethical wavier number W-CP-200320–4 was obtained.

Consent to participate

Not applicable.

Consent for publication

All authors gave their consent to publish this work.

Competing Interests

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• Five newly synthesised imidazole-based compounds were tested in silico and in vitro against Chromobacterium violaceum

• All compounds inhibited growth, quorum sensing and biofilm formation of Chromobacterium violaceum

• Quorum sensing of Chromobacterium violaceum was inhibiting at gene level

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 599 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arendse, M., Khan, S., Wani, M.Y. et al. Quorum Sensing and Biofilm Disrupting Potential of Imidazole Derivatives in Chromobacterium violaceum Using Antimicrobial and Drug Discovery Approaches. Braz J Microbiol 53, 565–582 (2022). https://doi.org/10.1007/s42770-022-00702-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00702-8

Keywords

Navigation