Skip to main content

Advertisement

Log in

Anti-enteric efficacy and mode of action of tridecanoic acid methyl ester isolated from Monochoria hastata (L.) Solms leaf

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Monochoria hastata (L.) Solms (family Pontederiaceae), an ethnomedicinal aquatic herb, is used to remedy several gastrointestinal diseases by various ethnic groups in India. The present study aimed to purify and characterize the antibacterial active ingredient against gastrointestinal (GI) diseases and its mode of action using in vitro experimental models. The active lead molecule in the ethyl acetate extract (EA-Mh) fraction has been purified and characterized through high-performance liquid chromatography (HPLC), proton nuclear magnetic resonance (1H NMR), and electrospray ionization mass spectrometry (ESI–MS) methods. The anti-enteric efficacy has been evaluated against enteropathogenic Gram-positive and Gram-negative bacteria by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), lactate dehydrogenase (LDH), and scanning electron microscopy (SEM) studies. The synergistic and antagonistic studies were done on E. coli MTCC 723 using standard antibiotics (ampicillin and kanamycin, final conc. 50 µg/ml) in a sterilized 96-well micro-plate, incubated at 37 ℃ for 24 h. The chromatographic and spectroscopic analyses revealed the presence of tridecanoic acid methyl ester (TAME) in the bioactive fraction. The compound causes significant extracellular leakage activity by disrupting cellular morphology in the Enterococcus faecalis MCC 2041 T and Salmonella enterica serovar Typhimurium MTCC 98, at a dose of 375 μg/ml and 750 μg/ml, respectively. The SEM study shows a significant rupturing of E. coli and E. faecalis cells due to TAME induced autolysis. It has synergistic activity with ampicillin. The in silico molecular docking through the AutoDock Vina 4.2 and GROMACS (ver. 5.1) Charmm27 force field results showed that the TAME had a strong binding affinity Escherichia coli DNA Gyrase B (PDB ID: 5l3j.pdb) protein and caused conformational changes. Thus, the manuscript reports the first time on the characterization of TAME from this plant with a detailed antibacterial mode of action studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Opsteegh M, Langelaar M, Threfall J, Scheutz F, van der Giessen J (2010) Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:S3-15. https://doi.org/10.1016/j.ijfoodmicro.2010.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  2. Howard DH, Scott DR II, Packard R, Jones D (2003) Global impact of drug resistance. Clin Infect Dis 36(Suppl. 1):S4-10. https://doi.org/10.1086/344656

    Article  PubMed  Google Scholar 

  3. Friedman M (2015) Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. J Agric Food Chem 63(15):3805–3822. https://doi.org/10.1021/acs.jafc.5b00778

    Article  CAS  PubMed  Google Scholar 

  4. Skov MN, Andersen JS, Aabo S, Ethelberg S, Aarestrup FM, Sørensen AH, ... Baggesen DL (2007) Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark. Emerg Infect Dis 13(4):638. https://doi.org/10.3201/eid1304.060748.

  5. Su LH, Chen HL, Liu SY, Chu C, Chia JH, Wu TL, Chiu CH (2006) Distribution of a transposon-like element carrying blaCMY-2 among Salmonella and other Enterobacteriaceae. J Antimicrob Chemother 57(3):424–429. https://doi.org/10.1093/jac/dki478

    Article  CAS  PubMed  Google Scholar 

  6. Yan JJ, Hong CY, Ko WC, Chen YJ, Tsai SH, Chuang CL, Wu JJ (2004) Dissemination of blaCMY-2 among Escherichia coli isolates from food animals, retail ground meats, and humans in southern Taiwan. Antimicrob Agents Chemother 48(4):1353–1356. https://doi.org/10.1128/AAC.48.4.1353-1356.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pantosti A (2012) Methicillin-resistant Staphylococcus aureus associated with animals and its relevance to human health. Front Microbiol 3:127. https://doi.org/10.3389/fmicb.2012.00127

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lester CH, Frimodt-Møller N, Sørensen TL, Monnet DL, Hammerum AM (2006) In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E faecium isolate of human origin in the intestines of human volunteers. Antimicrob Agents Chemother 50(2):596–599. https://doi.org/10.1128/AAC.50.2.596-599.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carlsson J (1984) Regulation of sugar metabolism in relation to the feast-and-famine existence of plaque. Cariology Today 205–11. Karger Publishers. https://doi.org/10.1159/000408740.

  10. Lemos JA, Quivey RG Jr, Koo H, Abranches J (2013) Streptococcus mutans: a new Gram-positive paradigm? Microbiol 159(3):436. https://doi.org/10.1099/mic.0.066134-0

    Article  CAS  Google Scholar 

  11. Tanwar J, Das S, Fatima Z, Hameed S (2014) Multidrug resistance: an emerging crisis. Interdisc Persp Infect Dis. https://doi.org/10.1155/2014/541340

    Article  Google Scholar 

  12. Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st Century. Perspect Med Chem 6(6):25–64. https://doi.org/10.4137/PMC.S14459

    Article  Google Scholar 

  13. Borris RP (1996) Natural products research: perspectives from a major pharmaceutical company. J Ethnopharm 51(1–3):29–38. https://doi.org/10.1016/0378-8741(95)01347-4

    Article  CAS  Google Scholar 

  14. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microb Rev 12(4):564–582. https://doi.org/10.1128/CMR.12.4.564

    Article  CAS  Google Scholar 

  15. Tiwari S (2008) Plants: A rich source of herbal medicine. J Nat Prod 1:27–35

    Article  Google Scholar 

  16. Lewis K, Ausubel FM (2006) Prospects for plant-derived antibacterials. Nat Biotech 24(12):1504–7. https://doi.org/10.1038/nbt1206-1504

    Article  CAS  Google Scholar 

  17. Abdallah EM (2011) Plants: an alternative source for antimicrobials. J Appl PharmaSci 1(6):16–20

    Google Scholar 

  18. Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemothera 2(1):23–28. https://doi.org/10.1128/AAC.2.1.23

    Article  CAS  Google Scholar 

  19. Kabara JJ (1984) Antimicrobial agents derived from fatty acids. J Am Oil Chemists’ Society 61(2):397–403. https://doi.org/10.1007/BF02678802

    Article  CAS  Google Scholar 

  20. Kitahara T, Koyama N, Matsuda J, Aoyama Y, Hirakata Y, Kamihira S, Kohno S, Nakashima M, Sasaki H (2004) Antimicrobial activity of saturated fatty acids and fatty amines against methicillin-resistant Staphylococcus aureus. Biol Pharmaceut Bull 27(9):1321–1326. https://doi.org/10.1248/bpb.27.1321

    Article  CAS  Google Scholar 

  21. P Desbois A (2012) Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries. Recent Pat Antiinfective Drug Discov 7(2):111–22. https://doi.org/10.2174/157489112801619728

    Article  Google Scholar 

  22. Freese E, Sheu C, Galliers E (1973) Function of lipophilic acids as antimicrobial food additives. Nature 241:321–325. https://doi.org/10.1038/241321a0

    Article  CAS  PubMed  Google Scholar 

  23. Chandrasekaran M, Kannathasan K, Venkatesalu V (2008) Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae. Zeitschrift für Naturforschung C 63(5–6):331–336. https://doi.org/10.1515/znc-2008-5-604

    Article  CAS  Google Scholar 

  24. Chandrasekaran M, Senthilkumar A, Venkatesalu V (2011) Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Euro Rev Medical Pharmacol Sci 15(7):775–780

    CAS  Google Scholar 

  25. Venkatesalu V, Sundaramoorthy P, Anantharaj M, Gopalakrishnan M, Chandrasekaran M (2004) Studies on the fatty acid composition of marine algae of Rameswaram coast. Seaweed Res Util 26(1–2):83–86

    Google Scholar 

  26. McGaw LJ, Jäger AK, Van Staden J (2002) Antibacterial effects of fatty acids and related compounds from plants. S Afr J Bot 68(4):417–423. https://doi.org/10.1016/S0254-6299(15)30367-7

    Article  CAS  Google Scholar 

  27. Misra D, Mandal M, Ghosh NN, Mandal V (2018) Pharmacognostic standardization of an ethnomedicinal aquatic herb, Monochoria hastata (L.) Solms for its antibacterial potentiality. Phcog J 10(3):533–40. https://doi.org/10.5530/pj.2018.3.87

    Article  CAS  Google Scholar 

  28. Misra D, Mandal M, Ghosh NN, Mandal V (2020) Extraction and volatile compounds profiling of the bioactive fraction of Monochoria hastata (L.) Solms. Phcog Mag 16:S517-23. https://doi.org/10.4103/pm.pm_386_19

    Article  Google Scholar 

  29. Misra D, Mandal M, Ghosh NN, Mandal V (2017) In vitro antioxidant and antibacterial activity and phytochemical profile of methanol extract of Monochoria hastata (L) Solms leaf. Int Res J Man Sc Tech 8(12):228–43. https://doi.org/10.32804/IRJMST

    Article  Google Scholar 

  30. Chase MW, Christenhusz MJ, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, Sennikov AN, Soltis PS, Stevens PF (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181(1):1–20. https://doi.org/10.1111/boj.12385

    Article  Google Scholar 

  31. Ajay KK, Lokanatha Rai KM, Umesha K (2002) Evaluation of antibacterial activity of 3, 5-dicyano-4, 6-diaryl-4-ethoxycarbonyl-piperid-2-ones. J Pharm Biomed Anal 27(5):837–840. https://doi.org/10.1016/s0731-7085(01)00456-3

    Article  Google Scholar 

  32. Kumar G, Karthik L, Rao KB (2010) Antimicrobial activity of latex of Calotropis gigantea against pathogenic microorganisms-an in vitro study. Pharm online 3(3):155–163

    Google Scholar 

  33. Rios JL, Recio MC, Villar A (1991) Isolation and identification of the antibacterial compounds from Helichrysum stoechas. J Ethnopharm 33(1–2):51–55. https://doi.org/10.1016/0378-8741(91)90160-F

    Article  CAS  Google Scholar 

  34. Mandal M, Paul S, Uddin MR, Mondal MA, Mandal S, Mandal V (2016) In vitro antibacterial potential of Hydrocotyle javanica Thunb. Asi Pac J Trop Dis 6(1):54–62. https://doi.org/10.1016/S2222-1808(15)60985-9

    Article  Google Scholar 

  35. Hao G, Shi Y-H, Tang Y-L, Le G-W (2009) The membrane action mechanism of analogs of the antimicrobial peptide Buforin 2. Peptides 30(8):1421–1427. https://doi.org/10.1016/j.peptides.2009.05.016

    Article  CAS  PubMed  Google Scholar 

  36. Mandal V, Sen SK, Mandal NC (2010) Assessment of antibacterial activities of pediocin produced by Pediococcus acidilactici LAB 5. J Food Safe 30(3):635–651. https://doi.org/10.1111/j.1745-4565.2010.00230.x

    Article  CAS  Google Scholar 

  37. Trott O, Olson AJ (2010) AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comp Chem 31(2):455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  Google Scholar 

  38. Abraham MJ, van der Spoel D, Lindahl E, Hess B (2015) The GROMACS development team, GROMACS User Manual version 5.1. http://www.gromacs.org

  39. Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theo Comp 6(2):459–466. https://doi.org/10.1021/ct900549r

    Article  CAS  Google Scholar 

  40. Zoete V, Cuendet MA, Grosdidier A, Michielin O (2011) SwissParam: a fast force field generation tool for small organic molecules. J Comp Chem 32(11):2359–2368. https://doi.org/10.1002/jcc.21816

    Article  CAS  Google Scholar 

  41. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera- a visualization system for exploratory research and analysis. J Comp Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  Google Scholar 

  42. Guarrasi V, Mangione MR, Sanfratello V, Martorana V, Bulone D (2010) Quantification of underivatized fatty acids from vegetable oils by HPLC with UV detection. J Chromatogr Sci 48(8):663–668. https://doi.org/10.1093/chromsci/48.8.663

    Article  CAS  PubMed  Google Scholar 

  43. Hill IR, Levin IW (1979) Vibrational spectra and carbon-hydrogen stretching mode assignments for a series of n alkyl carboxylic acids. The J Chem Phys 70(2):842–851. https://doi.org/10.1063/1.437517

    Article  CAS  Google Scholar 

  44. Dubey P, Sharma P, Kumar V (2017) FTIR and GC–MS spectral datasets of wax from Pinus roxburghii Sarg. needles biomass. Data in Brief 15:615–622. https://doi.org/10.1016/j.dib.2017.09.074

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mok HJ, Lee JW, Bandu R, Kang HS, Kim KH, Kim KP (2016) A rapid and sensitive profiling of free fatty acids using liquid chromatography-electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) after chemical derivatization. RSC Advan 6(38):32130–32139. https://doi.org/10.1039/C6RA01344A

    Article  CAS  Google Scholar 

  46. Abad JL, Fabriás G, Camps FJTJ (2000) Synthesis of dideuterated and enantiomers of monodeuterated tridecanoic acids at C-9 and C-10 positions. J Organic Chem 65(25):8582–8588. https://doi.org/10.1021/jo000957k

    Article  CAS  Google Scholar 

  47. Kerwin JL, Wiens AM, Ericsson LH (1996) Identification of fatty acids by electrospray mass spectrometry and tandem mass spectrometry. J Mass Spectro 31(2):184–192. https://doi.org/10.1002/(SICI)1096-9888(199602)31:2%3C184::AID-JMS283%3E3.0.CO;2-2

    Article  CAS  Google Scholar 

  48. Chowdhury SK, Dutta T, Chattopadhyay AP, Ghosh NN, Chowdhury S, Mandal V (2021) Isolation of antimicrobial Tridecanoic acid from Bacillus sp. LBF-01 and its potentialization through silver nanoparticles synthesis: a combined experimental and theoretical studies. J Nanostruc Chem 20:1–5. https://doi.org/10.1007/s40097-020-00385-3

    Article  CAS  Google Scholar 

  49. Belakhdar G, Benjouad A, Abdennebi EH (2015) Determination of some bioactive chemical constituents from Thesium humile Vahl. J Mater Environ Sci 6(10):2778–2783

    CAS  Google Scholar 

  50. Suresh A, Praveenkumar R, Thangaraj R, Oscar FL, Baldev E, Dhanasekaran D, Thajuddin N (2014) Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity. Asi Pac J Trop Dis 4:S979–S984. https://doi.org/10.1016/S2222-1808(14)60769-6

    Article  CAS  Google Scholar 

  51. Vlietinck AJ, Van Hoof L, Totte J, Lasure A, Berghe DV, Rwangabo PC, Mvukiyumwami J (1995) Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J Ethnopharmacol 46(1):31–47. https://doi.org/10.1016/0378-8741(95)01226-4

    Article  CAS  PubMed  Google Scholar 

  52. Parsons JB, Yao J, Frank MW, Jackson P, Rock CO (2012) Membrane disruption by antimicrobial fatty acids releases low-molecular-weight proteins from Staphylococcus aureus. J Bact 194(19):5294–5304. https://doi.org/10.1128/JB.00743-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Desbois AP, Smith VJ (2010) Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol 85(6):1629–1642. https://doi.org/10.1007/s00253-009-2355-3

    Article  CAS  PubMed  Google Scholar 

  54. Yoon BK, Jackman JA, Valle-González ER, Cho N-J (2018) Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. Int J Mol Sci 19(4):1114. https://doi.org/10.3390/ijms19041114

    Article  CAS  PubMed Central  Google Scholar 

  55. Galbraith H, Miller TB (1973) Physiological effects of long chain fatty acids on 10 bacterial cells and their protoplasts. J Appl Bacteriol 36:647–658. https://doi.org/10.1111/j.1365-2672.1973.tb04150.x

    Article  CAS  PubMed  Google Scholar 

  56. Sheu CW, Freese E (1972) Effects of fatty acids on growth and envelope proteins of Bacillus subtilis. J Bacteriol 111:516–524. https://doi.org/10.1128/jb.111.2.516-524.1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tsuchido T, Hiraoka T, Takano M, Shibasaki I (1985) Involvement of autolysin in cellular lysis of Bacillus subtilis induced by short- and medium-chain fatty acids. J Bacteriol 162:42–46. https://doi.org/10.1128/jb.162.1.42-46.1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tsuchido T, Ahn Y-H, Takano M (1987) Lysis of Bacillus subtilis cells by glycerol and sucrose esters of fatty acids. Appl Environ Microbiol 53:505–508. https://doi.org/10.1128/aem.53.3.505-508.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tsuchido T, Kato Y, Ono K, Matsumura Y (1996) Killing of Bacillus subtilis by cell suicide through autolysis induction. Biocon Sci 1(1):19–24. https://doi.org/10.4265/bio.1.19

    Article  Google Scholar 

  60. Bergsson G, Arnfinnsson J, SteingrÍmsson Ó, Thormar H (2001) Killing of Gram-positive cocci by fatty acids and monoglycerides. APMIS 109:670–678. https://doi.org/10.1034/j.1600-0463.2001.d01-131.x

    Article  CAS  PubMed  Google Scholar 

  61. Marr KA, Boeckh M, Carter RA, Kim HW, Corey L (2004) Combination antifungal therapy for invasive aspergillosis. Clin Infect Dis 39(6):797–802. https://doi.org/10.1086/423380

    Article  CAS  PubMed  Google Scholar 

  62. Rybak MJ, McGrath BJ (1996) Combination antimicrobial therapy for bacterial infections. Drugs 52(3):390–405. https://doi.org/10.2165/00003495-199652030-00005

    Article  CAS  PubMed  Google Scholar 

  63. Olajuyigbe OO, Afolayan AJ (2012) Synergistic interactions of methanolic extract of Acacia mearnsii De Wild. with antibiotics against bacteria of clinical relevance. Int J Mol Sci 13(7):8915–32. https://doi.org/10.3390/ijms13078915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pei RS, Zhou F, Ji BP, Xu J (2009) Evaluation of combined antibacterial effects of eugenol, cinnamaldehyde, thymol, and carvacrol against E. coli with an improved method. J Food Sci 74(7):M379-83. https://doi.org/10.1111/j.1750-3841.2009.01287.x

    Article  CAS  PubMed  Google Scholar 

  65. Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta (BBA)-Proteins and Proteomics 1794(5):808–16. https://doi.org/10.1016/j.bbapap.2008.11.005

    Article  CAS  Google Scholar 

  66. Chandrasekaran M, Venkatesalu V, Anantharaj M, Sivasankari S (2005) Antibacterial activity of fatty acid methyl esters of Ipomoea pes-caprae (L.) Sweet. Ind Dr 42:275–81

    Google Scholar 

  67. Özçelik B, Aslan M, Orhan I, Karaoglu T (2005) Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera. Microb Res 160(2):159–164. https://doi.org/10.1016/j.micres.2004.11.002

    Article  Google Scholar 

  68. Walker JM (ed) (2002) The Protein Protocols Handbook: Second Edition, Humana Press Inc., 999 Riverview Drive, Suite 208, Totowa, New Jersey

  69. Oussalah M, Caillet S, Lacroix M (2006) Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157: H7 and Listeria monocytogenes. J Food Prot 69(5):1046–1055. https://doi.org/10.4315/0362-028x-69.5.1046

    Article  PubMed  Google Scholar 

  70. Lambert RJW, Skandamis PN, Coote PJ, Nychas GJ (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microb 91(3):453–462. https://doi.org/10.1046/j.1365-2672.2001.01428.x

    Article  CAS  Google Scholar 

  71. Churchward CP, Alany RG, Snyder LA (2018) Alternative antimicrobials: the properties of fatty acids and monoglycerides. Crit Rev Microbiol 44(5):561–570. https://doi.org/10.1080/1040841X.2018.1467875

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to KIIT, Bhubaneswar, the Chembiotek, Kolkata, and the Department of Chemistry, Visva-Bharati, Santiniketan, for their cooperation in ESI-MS and NMR analysis, respectively.

Author information

Authors and Affiliations

Authors

Contributions

Debabrata Misra: Conceptualization; data curation; formal analysis; investigation; methodology; validation; visualization; roles/writing—original draft.

Narendra Nath Ghosh: Software; validation; visualization; roles/writing—original draft.

Manab Mandal: Data curation; investigation; methodology.

Vivekananda Mandal: Data curation; investigation; methodology.

Nabajyoti Baildya: Software; visualization.

Sukhendu Mandal: Conceptualization; resources; validation; writing—review and editing.

Vivekananda Mandal: Conceptualization; formal analysis; funding acquisition; resources; supervision; validation; visualization; writing—review and editing.

Corresponding author

Correspondence to Vivekananda Mandal.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Fernando R. Pavan

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1887 kb)

Supplementary file2 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, D., Ghosh, N.N., Mandal, M. et al. Anti-enteric efficacy and mode of action of tridecanoic acid methyl ester isolated from Monochoria hastata (L.) Solms leaf. Braz J Microbiol 53, 715–726 (2022). https://doi.org/10.1007/s42770-022-00696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00696-3

Keywords

Navigation