Skip to main content
Log in

Enhanced production of cordycepic acid from Cordyceps cicadae isolated from a wild environment

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Cordyceps acid is an active component of Cordyceps cicadae and has a variety of medicinal uses, including anti-tumor effects, the prevention of cerebral hemorrhaging and myocardial infarction, and the inhibition of a wide range of bacteria. The objectives of this study were to identify C. cicadae fungi and optimize the culture conditions to obtain a high yield of cordycepic acid. First, a wild C. cicadae was identified by morphological observation and rDNA sequence analysis. Secondly, the optimal fermentation conditions were determined using a single-factor method, a Plackett–Burman design, and a Box–Behnken response surface. Finally, using the yield of fruit bodies and the content of cordyceps acid as indices, combined with a single-factor experiment and a response surface design, the best combination of conditions for cultivation was determined. The results showed that the best combination was as follows: sucrose 2%, tryptone 2%, KH2PO4 0.4%, MgSO4·7H2O 0.4%, an initial pH of the fermentation liquid of 7.0, 5% inoculum, fermentation for 4.5 d, a ratio of medium to liquid of 1:1.7, illumination intensity 150 Lux, illumination time 15 h per day, and 70% humidity. The content of cordycepic acid in the fruiting bodies developed in cultivation was 2.07-fold higher than that in the wild C. cicadae. This study provides a theoretical basis for the large-scale cultivation of C. cicadae with a high concentration of cordycepic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Chen PX, Wang SN, Nie SP, Marcone M (2013) Properties of Cordyceps sinensis: a review. Journal of Functional Foods 5(2):550–569. https://doi.org/10.1016/j.jff.2013.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holliday J (2017) Cordyceps: a highly coveted medicinal mushroom. Medicinal and Aromatic Plants of the World 4:59–91. https://doi.org/10.1007/978-981-10-5978-0_3

    Article  Google Scholar 

  3. Chaubey R, Singh J, Baig MM, Kumar A (2019) Recent advances in understanding Candida albicans hyphal growth. Fungal Biology 25:441–474. https://doi.org/10.12688/f1000research.18546.1

  4. Ahn YJ, Park SJ, Lee SG, Shin SC, Choi DH (2000) Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. J Agric Food Chem 48(7):2744–2748. https://doi.org/10.1021/jf990862n

    Article  CAS  PubMed  Google Scholar 

  5. Li CR, Wang YQ, Cheng WM, Chen ZA, Hywel-Jones N, Li ZZ (2021) Review on research progress and prospects of cicada flower, Isaria cicadae (Ascomycetes). International Journal of Medicinal Mushrooms 23(4):81–91. https://doi.org/10.1615/IntJMedMushrooms.2021038085

    Article  PubMed  Google Scholar 

  6. Chu ZB, Chang J, Zhu Y, Sun X (2015) Chemical constituents of Cordyceps cicadae. Nat Prod Commun 10(12):2145–2146. https://doi.org/10.1177/1934578X1501001233

    Article  PubMed  Google Scholar 

  7. Jung K, Kim IH, Han D (2004) Effect of medicinal plant extracts on forced swimming capacity in mice. J Ethnopharmacol 93(1):75–81. https://doi.org/10.1016/j.jep.2004.03.022

    Article  PubMed  Google Scholar 

  8. Young LW, Park EJ, Ah NK, Ka KH (2009) Ergothioneine contents in fruiting bodies and their enhancement in mycelial cultures by the addition of methionine. Mycobiology 37(1):43–47. https://doi.org/10.4489/MYCO.2009.37.1.043

    Article  Google Scholar 

  9. Imtiaj A, Jayasinghe C, Lee GW, Kim HY, Shim MJ, Rho HS, Lee HS, Hur H, Lee MW, Lee UY, Lee TS (2008) Physicochemical requirement for the vegetative growth of Schizophyllum commune collected from different ecological origins. Mycobiology 36(1):34–39. https://doi.org/10.4489/MYCO.2008.36.1.034

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sung GH, Hywel-Jones NL, Sung JM, LaJ Jennifer, Bhushan S, Joseph WS (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology 57:5–59. https://doi.org/10.3114/sim.2007.57.013

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lu RL, Luo FF, Hu FL, Huang B, Li CR, Bao GH (2013) Identification and production of a novel natural pigment, cordycepoid A, from Cordyceps bifusispora. Appl Microbiol Biotechnol 97(14):6241–6249. https://doi.org/10.1007/s00253-013-4966-y

    Article  CAS  PubMed  Google Scholar 

  12. Zhang SP, Feng H, Li XY, Jin YS, Dong W (2010) Genome research profile of two Cordyceps sinensis cDNA libraries. Chin Sci Bull 14:1403–1411. https://doi.org/10.1007/s11434-010-0113-7

    Article  CAS  Google Scholar 

  13. Tian Y, Duan L, Song YH, Liu R-X (2017) The application of modern molecular biological techniques in the research of microbial community structure and diversity. 2017 International Conference on Energy Development and Environmental Protection (EDEP 2017) 11:308–312. https://doi.org/10.12783/dteees/edep2017/15562

  14. Edwards JE, Hermes GDA, Kittelmann S, Nijsse B, Smidt H (2019) Assessment of the Accuracy of high-throughput sequencing of the ITS1 region of neocallimastigomycota for community composition analysis. Front Microbiol 10:2370–2380. https://doi.org/10.3389/fmicb.2019.02370

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang J, Wang X, Wu J, Kumari D (2019) Fungal community composition analysis of 24 different urban parks in Shanghai. China Urban Ecosystems 22(5):855–863. https://doi.org/10.1007/s11252-019-00867-5

    Article  Google Scholar 

  16. Dong JZ, Lei C, Ai XR, Wang Y (2012) Selenium enrichment on Cordyceps militaris link and analysis on its main active components. Appl Biochem Biotechnol 166(5):1215–1224. https://doi.org/10.1007/s12010-011-9506-6

    Article  CAS  PubMed  Google Scholar 

  17. Hsieh C, Tsai MJ, Hsu TH, Chang DM, Lo CT (2005) Medium optimization for polysaccharide production of Cordyceps sinensis. Applied Biochemistry and Biotechnology 120(2):145–157. https://doi.org/10.1385/abab:120:2:145

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen QV, Khuat HT, Nguyen YNT, Vu DT, Bui TH, Boo KH (2020) Drynaria bonii spore culture: optimization of culture conditions and analysis of gametophyte and sporophyte development. Plant Biotechnology Reports 14:575–584. https://doi.org/10.1007/s11816-020-00632-7

    Article  Google Scholar 

  19. Geethanjali PA, Gowtham HG, Jayashankar M (2020) Optimization of culture conditions for hyper-production of laccase from an indigenous litter dwelling fungus Mucor circinelloides GL1. Environmental Sustainability 3:481–495. https://doi.org/10.1007/s42398-020-00137-7

    Article  CAS  Google Scholar 

  20. Baş D, İsmail HB (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78(3):836–845. https://doi.org/10.1016/j.jfoodeng.2005.11.024

    Article  CAS  Google Scholar 

  21. Ghasemlou M, Khodaiyan F, Jahanbin K, Gharibzahedi SMT, Taheri S (2012) Structural investigation and response surface optimisation for improvement of kefiran production yield from a low-cost culture medium. Food Chem 133(2):383–389. https://doi.org/10.1016/j.foodchem.2012.01.046

    Article  CAS  PubMed  Google Scholar 

  22. Raethong N, Wang H, Nielsen J, Vongsangnak W (2020) Optimizing cultivation of Cordyceps militaris for fast growth and cordycepin overproduction using rational design of synthetic media. Comput Struct Biotechnol J 18:1–8. https://doi.org/10.1016/j.csbj.2019.11.003

    Article  CAS  PubMed  Google Scholar 

  23. Dou Y, Xiao JH, Xia XX, Zhong JJ (2013) Effect of oxygen supply on biomass and helvolic acid production in submerged fermentation of Cordyceps taii. Biochem Eng J 81:73–79. https://doi.org/10.1016/j.bej.2013.10.005

    Article  CAS  Google Scholar 

  24. Curran PMT (2018) The effect of temperature, pH, light and dark on the growth of fungi from Irish coastal waters. Mycological Society of America 72(2):350–358. https://doi.org/10.1080/00275514.1980.12021188

    Article  Google Scholar 

  25. Xu YD, Li F, Xu C, Luo SH, Chao SJ, Guo Y, Liu CC, Zhang LB (2015) Quantitative assessment of the ecological impact of Chinese cordyceps collection in the typical production areas. Écoscience 22(2–4):167–175. https://doi.org/10.1080/11956860.2016.1181516

    Article  Google Scholar 

  26. Hu XJ, Webster G, Xie LH, Yu CB, Li YS, Liao X (2014) A new method for the preservation of axenic fungal cultures. J Microbiol Methods 99:81–83. https://doi.org/10.1016/j.mimet.2014.02.009

    Article  CAS  PubMed  Google Scholar 

  27. Kuniyal CP, Sundriyal RC (2013) Conservation salvage of Cordyceps sinensis collection in the Himalayan mountains is neglected. Ecosyst Serv 3:40–43. https://doi.org/10.1016/j.ecoser.2012.12.004

    Article  Google Scholar 

  28. Chioza A, Ohga S (2014) A comparative study on chemical composition and pharmacological effects of Paecilomyces hepiali and wild Ophiocordyceps sinensis. Adv Microbiol 4(12):839–848. https://doi.org/10.4236/aim.2014.412093

    Article  Google Scholar 

  29. Arkowitz RA, Bassilana M (2019) Recent advances in understanding Candida albicans hyphal growth. F1000Research 8:700–708. https://doi.org/10.12688/f1000research.18546.1

  30. Premalatha K, Kalra A (2013) Molecular phylogenetic identification of endophytic fungi isolated from resinous and healthy wood of Aquilaria malaccensis, a red listed and highly exploited medicinal tree. Fungal Ecol 6(3):205–211. https://doi.org/10.1016/j.funeco.2013.01.005

    Article  Google Scholar 

  31. Dong CH, Xie XQ, Wang XL, Zhan Y, Yao YJ (2008) Application of Box-Behnken design in optimisation for polysaccharides extraction from cultured mycelium of Cordyceps sinensis. Food Bioprod Process 87(2):139–144. https://doi.org/10.1016/j.fbp.2008.06.004

    Article  Google Scholar 

  32. Oliveira RS, Carvalho P, Marques G, Ferreira L, Nunes M, Rocha I, Ma Y, Carvalho MF, Vosátka M, Freitas H (2017) Increased protein content of chickpea (Cicer arietinum L) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions. Journal of the Science of Food and Agriculture 97(13):4379–4385. https://doi.org/10.1002/jsfa.8201

    Article  CAS  PubMed  Google Scholar 

  33. Liang CH, Wu CY, Ho WJ, Liang ZC (2020) Influences of carbon and nitrogen source addition, water content, and initial pH of grain medium on hispidin production of Phellinus linteus by solid-state fermentation. J Biosci Bioeng 130(6):616–621. https://doi.org/10.1016/j.jbiosc.2020.08.002

    Article  CAS  PubMed  Google Scholar 

  34. Yan CW, Loke SP, Jiun YY, Fatimah MZH, Kee LM, Wei LJ, YeekChia H, Yang T (2020) Enhancing microalga Chlorella sorokiniana CY-1 biomass and lipid production in palm oil mill effluent (POME) using novel-designed photobioreactor. Bioengineered 11(1):61–69. https://doi.org/10.1080/21655979.2019.1704536

    Article  CAS  Google Scholar 

  35. Sumiya Y, Sakaki H, Tsushima M, Miki W, Komemushi S, Sawabe A (2007) Culture characteristics of carotenoid-producing filamentous fungus T-1, and carotenoid production. J Oleo Sci 56(12):649–652. https://doi.org/10.5650/jos.56.649

    Article  CAS  PubMed  Google Scholar 

  36. Anna P, Marta RS, Frąc M, Mazur A, Wielbo J, Janusz G (2019) The wood decay fungus Cerrena unicolor adjusts its metabolism to grow on various types of wood and light conditions. PLoS ONE 14(2):e0211744. https://doi.org/10.1371/journal.pone.0211744

    Article  CAS  Google Scholar 

  37. Vogel H, González B, Razmilic I (2010) Boldo (Peumus boldus) cultivated under different light conditions, soil humidity and plantation density. Ind Crops Prod 34(2):1310–1312. https://doi.org/10.1016/j.indcrop.2010.10.039

    Article  Google Scholar 

  38. Robert DB, Charles LF (2018) The influence of temperature and relative humidity on growth and survival of silage fungi. Mycologia 52(4):642–647. https://doi.org/10.1080/00275514.1960.12024937

    Article  Google Scholar 

  39. Glazar BS, Garcia JA, Cowan PD, Strait EG, Vang PH, Larman MG (2019) Humidity level during culture does not affect mouse embryo development. Fertil Steril 111(4):e47–e48. https://doi.org/10.1016/j.fertnstert.2019.02.111

    Article  Google Scholar 

  40. Lin S, Liu ZQ, Xue YP, Baker PJ, Wu H, Xu F, Teng Y, Brathwaite ME, Zheng YG (2016) Biosynthetic pathway analysis for improving the cordycepin and cordycepic acid production in Hirsutella sinensis. Appl Biochem Biotechnol 179(4):633–649. https://doi.org/10.1007/s12010-016-2020-0

    Article  CAS  PubMed  Google Scholar 

  41. Wang H, Wang J, Wang YT, Liu YQ, Liu R, Wang XL, Tan H, Wang TF, Kong TT (2020) Oriented boronate affinity–imprinted inverse opal hydrogel for glycoprotein assay via colorimetry. Microchim Acta 187(6):348–357. https://doi.org/10.1007/s00604-020-04320-9

    Article  CAS  Google Scholar 

  42. Arokiyaraj S, Varghese R, Ahmed BA, Duraipandiyan V, Al-Dhabi NA (2019) Optimizing the fermentation conditions and enhanced production of keratinase from Bacillus cereus isolated from halophilic environment. Saudi Journal of Biological Sciences 26(2):36–43. https://doi.org/10.1016/j.sjbs.2018.10.011

    Article  CAS  Google Scholar 

  43. Ankit K, Pavuluri SR (2020) Optimization of pulsed-mode ultrasound assisted extraction of bioactive compounds from pomegranate peel using response surface methodology. Journal of Food Measurement and Characterization 14(6):3493–3507. https://doi.org/10.1007/s11694-020-00597-9

    Article  Google Scholar 

  44. Gao P, Xia WS, Li XZ, Liu SQ (2020) Optimization of the Maillard reaction of xylose with cysteine for modulating aroma compound formation in fermented tilapia fish head hydrolysate using response surface methodology. Food Chem 331:127353–127362. https://doi.org/10.1016/j.foodchem.2020.127353

    Article  CAS  PubMed  Google Scholar 

  45. Tang XH, Zhang CJ, Sui M, Zhou W, Shu Xx (2019) Isolation and identification of Cordyceps militaris with high yield cordycepic acid and its culture condition optimization. China Brewing 38 (11):134–139. https://doi.org/10.11882/j.issn.0254-5071.2019.11.027

  46. Yang SL, Zhang H (2016) Optimization of the fermentation process of Cordyceps sobolifera Se-CEPS and its anti-tumor activity in vivo. J Biol Eng 10:8–16. https://doi.org/10.1186/s13036-016-0029-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sharma SK, Gautam N, Atri NS (2018) Optimized extraction, composition, antioxidant and antimicrobial activities of exo and intracellular polysaccharides from submerged culture of Cordyceps cicadae. BMC Complement Altern Med 15:466–475. https://doi.org/10.1186/s12906-015-0967-y

    Article  CAS  Google Scholar 

  48. Lin QY, Song B, Huang H, Li TH (2010) Optimization of selected cultivation parameters for Cordyceps guangdongensis. Lett Appl Microbiol 51(2):219–225. https://doi.org/10.1111/j.1472-765x.2010.02881.x

    Article  CAS  PubMed  Google Scholar 

  49. Hadhoum L, Loubar K, Paraschiv M, Burnens G, Awad S, Tazerout M (2020) Optimization of oleaginous seeds liquefaction using response surface methodology. Biomass Conversion and Biorefinery 4:1–13. https://doi.org/10.1007/s13399-020-00681-6

    Article  CAS  Google Scholar 

  50. Carabajal M, Teglia CM, Cerutti S, Culzoni MJ, Goicoechea HC (2020) Applications of liquid-phase microextraction procedures to complex samples assisted by response surface methodology for optimization. Microchem J 152:104436–104451. https://doi.org/10.1016/j.microc.2019.104436

    Article  CAS  Google Scholar 

  51. He YQ, Zhang WC, Peng F, Lu RL, Zhou H, Bao GH, Wang B, Huang B, Li ZZ, Hu FL (2019) Metabolomic variation in wild and cultured cordyceps and mycelia of Isaria cicadae. Biomed Chromatogr 33(4):e4478–e4512. https://doi.org/10.1002/bmc.4478

    Article  CAS  PubMed  Google Scholar 

  52. Liu Y, Xiao K, Wang Z, Wang S, Xu F (2021) Comparison of metabolism substances in Cordyceps sinensis and Cordyceps militaris cultivated with tussah pupa based on LC-MS. J Food Biochem 45(6):e13735. https://doi.org/10.1111/jfbc.13735

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China (Grant No. 31501461), the Key Scientific Research Foundation of Anhui Province Education Department (Grant No. KJ2021A0959), and the Science and Technology Planning Project of Huainan (Grant No. 2021A2410).

Author information

Authors and Affiliations

Authors

Contributions

Cuie Shi conceived and designed the study. Wenlong Song and Jian Gao wrote the manuscript. Wenlong Song, Chen Guo, and Tengfei Zhang conducted the experiments. Cuie Shi, Wenlong Song, and Shoubao Yan analyzed the data. Cuie Shi and Shoubao Yan revised the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Shoubao Yan.

Ethics declarations

Conflict of interest

Cuie Shi, Wenlong Song, Jian Gao, Shoubao Yan, Chen Guo, and Tengfei Zhang declare that they have no conflict of interest.

Additional information

Responsible Editor: Derlene Attili Agellis

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cuie Shi and Wenlong Song are co-first author.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Song, W., Gao, J. et al. Enhanced production of cordycepic acid from Cordyceps cicadae isolated from a wild environment. Braz J Microbiol 53, 673–688 (2022). https://doi.org/10.1007/s42770-022-00687-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00687-4

Keywords

Navigation