Skip to main content

Advertisement

Log in

Genetic diversity of Chlamydia pecorum detected in sheep flocks from Mexico

  • Bacterial, Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Chlamydia pecorum, an obligate intracellular bacterium, is associated with reproductive and systemic diseases in sheep, goats, pigs, cattle, and koalas. The main conditions include polyarthritis, conjunctivitis, enteritis, pneumonia, encephalomyelitis, orchitis, placentitis, and abortion. Even though there are several studies showing that C. pecorum infections are widely spread in the world, in Mexico there are no reports. During 2016, as part of a sheep restocking program in Mexico, sheep were imported from New Zealand. Briefly after their arrival in the herds in the State of Mexico, these sheep presented abortions during the last third of gestation. A total of 62 sheep vaginal swabs that had presented abortion from different municipalities of the State of Mexico were collected. Bacterial isolation was performed using L929 mouse fibroblasts, and molecular identification was achieved by 23S rRNA (Chlamydiaceae family) and ompA gene (species-specific) real-time polymerase chain reaction (PCR). In addition, the 16S rRNA subunit and ompA gene were amplified and sequenced. Seven of 62 samples were positive for C. pecorum by bacterial isolation, 23S rRNA, and ompA gene real-time PCR. The 16S rRNA subunit and ompA gene amplicons were purified and the nucleotide sequence was determined in both directions. The consensus sequences homology search was performed using BLASTn analysis and showed a 100% of homology with the C. pecorum 16S rRNA subunit and 99% with the C. pecorum ompA gene. The population structure analyses using ompA gene demonstrated 15 genetic populations or clusters of 198 sequences from GenBank and our sequences were in a particular genetic structure corresponding to genotype “O.” Herein, we describe the presence of C. pecorum in sheep imported from New Zealand into Mexico. Genetic analysis of the ompA gene showed that the isolates belong to genotype O and are related to strains isolated from sheep, cattle, and koalas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The 16S rRNA and ompA gene sequences are available in GenBank under the following accession numbers: MT453711, OL604432, OL604433, OL604434, OL604435, OL604436, and OL604437 for 16S rRNA subunit and MT462980, OL606750, OL606751, OL606752, OL606753, OL606754, and OL606755 for ompA gene.

References

  1. Rodolakis A, Salinas J, Papp J (1998) Recent advances on ovine chlamydial abortion. Vet Res 29(3–4):275–288

    CAS  PubMed  Google Scholar 

  2. Aitken ID, Longbottom D (2007) Chlamydial abortion. In: Aitken (ed) Diseases of sheep, 4th edn. Blackwell Publishing, Oxford, pp 105–112

    Chapter  Google Scholar 

  3. Berri M, Rekiki A, Boumedine KS, Rodolakis A (2009) Simultaneous differential detection of Chlamydophila abortus, Chlamydophila pecorum and Coxiella burnetii from aborted ruminant’s clinical samples using multiplex PCR. BMC Microbiol 9:130. https://doi.org/10.1186/1471-2180-9-130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Polkinghorne A, Hanger J, Timms P (2013) Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas. Vet Microbiol 165:214–223. https://doi.org/10.1016/j.vetmic.2013.02.026

    Article  PubMed  Google Scholar 

  5. Walker E, Lee JE, Timms P, Polkinghorne A (2015) Chlamydia pecorum infections in sheep and cattle: A common and under-recognized infectious disease with significant impact on animal health. Vet J 206:252–260. https://doi.org/10.1016/j.tvjl.2015.09.022

    Article  PubMed  Google Scholar 

  6. Giannitti F, Anderson M, Miller M, Rowe J, Sverlow K, Vasquez M, Cantón G (2016) Chlamydia pecorum: fetal and placental lesions in sporadic caprine abortion. J Vet Diagn Invest 28(2):184–189. https://doi.org/10.1177/1040638715625729

    Article  CAS  PubMed  Google Scholar 

  7. Walker ER, Moore C, Shearer PL, Jelocnik M, Bommana S, Timms P, Polkinghorne A (2016) Clinical, diagnostic and pathologic features of presumptive cases of Chlamydia pecorum-associated arthritis in Australian sheep flocks. BMC Vet Res 12:193. https://doi.org/10.1186/s12917-016-0832-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mojica S, Huot Creasy H, Daugherty S, Read TD, Kim T, Kaltenboeck B, Bavoil P, Myers GS (2011) Genome sequence of the obligate intracellular animal pathogen Chlamydia pecorum E58. J Bacteriol 193(14):3690. https://doi.org/10.1128/JB.00454-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Polkinghorne A, Borel N, Becker A, Lu ZH, Zimmerman DR, Brugnera E, Pospischil A, Vaughan L (2009) Molecular evidence for chlamydial infections in the eyes of sheep. Vet Microbiol 135:142–146. https://doi.org/10.1016/j.vetmic.2008.09.034

    Article  CAS  PubMed  Google Scholar 

  10. Osman KM, Ali HA, ElJakee JA, Galal HM (2011) Chlamydophila psittaci and Chlamydophila pecorum infections in goats and sheep in Egypt. Rev Sci Tech 30:939–948. https://doi.org/10.20506/rst.30.3.2088

    Article  CAS  PubMed  Google Scholar 

  11. Jelocnik M, Frentiu FD, Timms P, Polkinghorne A (2013) Multilocus sequence analysis provides insights into molecular epidemiology of Chlamydia pecorum infections in Australian sheep, cattle, and koalas. JCM 51:2625–2632. https://doi.org/10.1128/JCM.00992-13

    Article  CAS  Google Scholar 

  12. Yang R, Jacobson C, Gardner G, Carmichael I, Campbell AJD, Ryan U (2016) Longitudinal prevalence and faecal shedding of Chlamydia pecorum in sheep. Vet J 201(3):322–326. https://doi.org/10.1016/j.tvjl.2014.05.037

    Article  Google Scholar 

  13. Merdja SE, Hamza KH, Aaziz R, Vorimore F, Bertin C, Dahmani A, Bouyoucef A, Laroucau K (2015) Detection and genotyping of Chlamydia species responsible for reproductive disorders in Algerian small ruminants. Trop Anim Health Prod 47:437–443. https://doi.org/10.1007/s11250-014-0743-x

    Article  PubMed  Google Scholar 

  14. Mackereth G, Stanislawek W (2002) First isolation of Chlamydophila pecorum in New Zealand. Surveillance Publishing Australasian e-Library of Veterinary and Animal Science 29(3):17–18. http://www.sciquest.org.nz/node/47245. Accessed 20 Oct 2020

  15. Mohamad K, Rekiki A, Myers G, Bavoil P, Rodolakis A (2008) Identification and characterization of coding tandem repeat variants in incA gene of Chlamydophila pecorum. Vet Res 39(6):56. https://doi.org/10.1051/vetres:2008032

    Article  Google Scholar 

  16. Hunt H, Orbell GMB, Buckle KN, Ha HJ, Lawrence KE, Fairley RA, Munday JS (2016) First report and histological features of Chlamydia pecorum encephalitis in calves in New Zealand. N Z Vet J 64(6):364–368. https://doi.org/10.1080/00480169.2016.1208781

    Article  CAS  PubMed  Google Scholar 

  17. OIE (2014) Leptospirosis. Chapter 3.1.12. In: OIE (ed) Manual of diagnostic tests and vaccines for terrestrial animals 2018. https://www.oie.int/es/que-hacemos/normas/codigos-y-manuales/acceso-en-linea-al-manual-terrestre/

  18. Alton GG, Jones LM, Pietz DE (1975) World Health Organization & Food and Agriculture Organization of the United Nations. Laboratory techniques in brucellosis / G. G. Alton, Lois M. Jones & D. E. Pietz, 2nd ed. World Health Organization

  19. Escalante-Ochoa C, Díaz-Aparicio E, Segundo-Zaragoza C, Suárez-Güemes F (1997) Isolation of Chlamydia psittaci involved in abortion of goats in Mexico: first report. Rev Latinoam Microbiol 39(3–4):117–121

    CAS  PubMed  Google Scholar 

  20. Ehricht R, Slickers P, Goellner S, Hotzel H, Sachse K (2006) Optimized DNA microarray assay allows detection and genotyping of single PCR-amplifiable target copies. Mol Cell Probes 20:60–63. https://doi.org/10.1016/j.mcp.2005.09.003

    Article  CAS  PubMed  Google Scholar 

  21. Pantchev A, Sting R, Bauerfeind R, Tyezka J, Sachse K (2010) Detection of all Chlamydophila and Chlamydia spp. of veterinary interest using species-specific real-time PCR assays. Comp Immunol Microbiol Infect Dis 33(6):473–484. https://doi.org/10.1016/j.cimid.2009.08.002

    Article  PubMed  Google Scholar 

  22. Everett KD, Bush RM, Andersen AA (1999) Emended description of the order Chlamydiales, proposal of Parachlamydiae fam. Nov. and Simkaniaceae fam. Nov., each containing one monotype genus, revised taxonomy of the family Chlamydiaceae, including a new genus, and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49(2):415–440. https://doi.org/10.1099/00207713-49-2-415

    Article  CAS  PubMed  Google Scholar 

  23. Sachse K, Laroucau K, Riegec K, Wehner S, Dilcher M, Creasy HH, Weidmannd M, Myers G et al (2014) Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydia avium sp. nov. and Chlamydia gallinacea sp. nov. Syst Appl Microbiol 37(2):79–88. https://doi.org/10.1016/j.syapm.2013.12.004

    Article  PubMed  Google Scholar 

  24. Denamur E, Sayada C, Souriau A, Orfila J, Rodolakis A, Elion J (1991) Restriction pattern of the major outer-membrane protein gene provides evidence for a homogeneous invasive group among ruminant isolates of Chlamydia psittaci. J Gen Microbiol 137(11):2525–2530. https://doi.org/10.1099/00221287-137-11-2525

    Article  CAS  PubMed  Google Scholar 

  25. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959

    Article  CAS  Google Scholar 

  30. Kollipara A, Polkinghorne A, Wan C, Kanyoka P, Hanger J, Loader J, Callaghan J, Bell A et al (2013) Genetic diversity of Chlamydia pecorum strains in wild koala locations across Australia and the implications for a recombinant C. pecorum major outer membrane protein based vaccine. Vet Microbiol 167(3–4):513–522. https://doi.org/10.1016/j.vetmic.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  31. Legione AR, Patterson JLS, Whiteley PL, Amery-Gale J, Lynch M, Haynes L, Gilkerson JR, Polkinghorne A, Devlin JM, Sansom FM (2016) Identification of unusual Chlamydia pecorum genotypes in Victorian koalas (Phascolarctos cinereus) and clinical variables associated with infection. J Med Microbiol 65(5):420–428. https://doi.org/10.1099/jmm.0.000241

    Article  CAS  PubMed  Google Scholar 

  32. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  33. Longbottom D, Coulter LJ (2003) Animal chlamydioses and zoonotic implications. J Comp Pathol 128(4):217–244. https://doi.org/10.1053/jcpa.2002.0629

    Article  CAS  PubMed  Google Scholar 

  34. Jiménez-Estrada JM, Escobedo-Guerra MR, Arteaga-Troncoso G, López-Hurtado M, Haro-Cruz MJ, de Oca M, Jiménez RMO, Guerra-Infante FM (2008) Detection of Chlamydophila abortus in sheep (Ovis aries) in Mexico. Am J Anim Vet Sci 3:91–95

    Article  Google Scholar 

  35. Campos-Hernández E, Vázquez-Chagoyán JC, Salem AZ, Saltijeral-Oaxaca JA, Escalante-Ochoa C, López-Heydeck SM, de Oca-Jiménez RM (2014) Prevalence and molecular identification of Chlamydia abortus in commercial dairy goat farms in a hot region in Mexico. Trop Anim Health Prod 46(6):919–924. https://doi.org/10.1007/s11250-014-0585-6

    Article  PubMed  Google Scholar 

  36. Mora-Díaz JC, Díaz-Aparicio E, Herrera-López E, Suárez-Güemez F, Escalante-Ochoa C, Jaimes-Villareal S, Arellano-Reynoso B (2015) Isolation of Chlamydia abortus in dairy goat herds and its relation to abortion in Guanajuato, Mexico. Vet Mex 2(1). https://doi.org/10.21753/vmoa.2.1.339

  37. Lenzko H, Moog U, Henning K, Lederbach R, Diller R, Menge C, Sachse K, Sprague LD (2011) High frequency of chlamydial co-infections in clinically healthy sheep flocks. BMC Vet Res 7:29. https://doi.org/10.1186/1746-6148-7-29

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bingham P (2012) Quarterly report of investigations of suspected exotic diseases Jan–March. Surveillance Publishing Australasian e-Library of Veterinary and Animal Science 39(2):27–31. http://www.sciquest.org.nz/node/77409

  39. Sait M, Livingstone M, Clark EM, Wheelhouse N, Spalding L, Markey B, Magnino S, Lainson FA, Myers GS, Longbottom D (2014) Genome sequencing and comparative analysis of three Chlamydia pecorum strains associated with different pathogenic outcomes. BMC Genomics 15(1):23. https://doi.org/10.1186/1471-2164-15-23

    Article  PubMed  PubMed Central  Google Scholar 

  40. Takahashi T, Masuda M, Tsuruno T, Mori Y, Takashima I, Hiramune T, Kikuchi N (1997) Phylogenetic analyses of Chlamydia psittaci strains from birds based on 16S rRNA gene sequence. J Clin Microbiol 35(11):2908–2914. https://doi.org/10.1128/JCM.35.11.2908-2914.1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pudjiatmoko FH, Ochiai Y, Yamaguchi T, Hirai K (1997) Phylogenetic analysis of the genus chlamydia based on 16s rRNA gene sequences. Int J Syst Bacteriol 47(2):425–431. https://doi.org/10.1099/00207713-47-2-425

    Article  CAS  PubMed  Google Scholar 

  42. Mohamad KY, Kaltenboeck B, Rahman KhS, Magnino S, Sachse K, Rodolakis A (2014) Host adaptation of Chlamydia pecorum towards low virulence evident in co-evolution of the ompA, incA, and ORF663 loci. PLoS ONE 9(8):e103615. https://doi.org/10.1371/journal.pone.0103615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaltenboeck B, Heinen E, Schneider R, Wittenbrink MM, Schmeer N (2009) OmpA and antigenic diversity of bovine Chlamydophila pecorum strains. Vet Microbiol 135(1–2):175–180. https://doi.org/10.1016/j.vetmic.2008.09.036

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by SAGARPA CONACyT 2017–2-291311: “Desarrollo y transferencia de pruebas diagnósticas para Lentivirus y microorganismos causantes de aborto: Chlamydia spp., Brucella melitensis, Leptospira spp. y Coxiella burnetii, en ovinos y caprinos” and SEP-CONACYT-ANUIES-ECOS Francia 291241: Epidemiologia y diversidad genética de Chlamydiaceae en rumiantes, industria avícola y aves silvestres: ¿Cuáles son sus implicaciones zoonóticas?”.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design.

Corresponding author

Correspondence to M. M. Limón-González.

Ethics declarations

Ethics approval

The manuscript does not contain clinical studies or patient data.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Fernando R. Spilki

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limón-González, M.M., Hernández-Castro, R., Martínez-Hernández, F. et al. Genetic diversity of Chlamydia pecorum detected in sheep flocks from Mexico. Braz J Microbiol 53, 605–613 (2022). https://doi.org/10.1007/s42770-022-00682-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-022-00682-9

Keywords

Navigation