Skip to main content
Log in

The secondary metabolites from Beauveria bassiana PQ2 inhibit the growth and spore germination of Gibberella moniliformis LIA

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Fungal secondary metabolites with antimicrobial properties are used for biological pest control. Their production is influenced by several factors as environment, host, and culture conditions. In the present work, the secondary metabolites from fermented extracts of Beauveria bassiana PQ2 were tested as antifungal agents against Gibberella moniliformis LIA. The L18 (21 × 37) orthogonal array from Taguchi methodology was used to assess 8 parameters (pH, agitation, sucrose, yeast extract, KH2PO4, MgSO4, NH4NO3, and CaCl2) in B. bassiana PQ2 submerged fermentation. The ability of the fermented extracts to slow down the growth rate of G. moniliformis LIA was evaluated. The results from 18 trials were analyzed by Statistica 7 software by evaluating the signal-to-noise ratio (S/N) to find the lower-the-better condition. Optimal culture conditions were pH, 5; agitation, 250 rpm; sucrose, 37.5 g/L−1; yeast extract, 10 g/L−1; KH2PO4, 0.8 g/L−1; MgSO4, 1.2 g/L−1; NH4NO3, 0.1 g/L−1; and CaCl2, 0.4 g/L−1, being the agitation at the highest level the most significant factor. The optimal conditions were validated in a sparged bottle bioreactor resulting in a higher S/N value (12.48) compared to the estimate. The extract obtained has the capacity to inhibit the germination of G. moniliformis spores at 24 h. HPLC-ESI-MS2 allowed to identify the water-soluble red pigment as oosporein (m/z 304.9). The secondary metabolites from B. bassiana PQ2 are a suitable alternative to control the growth and sporulation of G. moniliformis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The dataset used in the current study are available from the corresponding author on reasonable request.

References

  1. Horak I, Engelbrecht G, van Rensburg PJJ, Claassens S (2019) Microbial metabolomics: essential definitions and the importance of cultivation conditions for utilizing Bacillus species as bionematicides. J Appl Microbiol 127:326–343. https://doi.org/10.1111/jam.14218

    Article  CAS  PubMed  Google Scholar 

  2. Bracarense AAP, Takahashi JA (2014) Modulation of antimicrobial metabolites production by the fungus Aspergillus parasiticus. Brazilian J Microbiol 45:313–321. https://doi.org/10.1590/S1517-83822014000100045

    Article  Google Scholar 

  3. Ruiz B, Chávez A, Forero A et al (2010) Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol 36:146–167. https://doi.org/10.3109/10408410903489576

    Article  CAS  PubMed  Google Scholar 

  4. Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17:167–180. https://doi.org/10.1038/s41579-018-0121-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elias BC, Said S, de Albuquerque S, Pupo MT (2006) The influence of culture conditions on the biosynthesis of secondary metabolites by Penicillium verrucosum Dierck. Microbiol Res 161:273–280. https://doi.org/10.1016/j.micres.2005.10.003

    Article  CAS  PubMed  Google Scholar 

  6. Ávila-Hernández JG, Carrillo-Inungaray ML, De la Cruz Quiroz R et al (2020) Beauveria bassiana secondary metabolites: a review inside their production systems, biosynthesis, and bioactivities. Mex J Biotechnol 5:1–33. https://doi.org/10.29267/mxjb.2020.5.4.1

    Article  Google Scholar 

  7. Aoki T, O’Donnell K, Geiser DM (2014) Systematics of key phytopathogenic Fusarium species: current status and future challenges. J Gen Plant Pathol 80:189–201

    Article  CAS  Google Scholar 

  8. Montoya-Martínez AC, Rodríguez-Alvarado G, Fernández-Pavía SP et al (2019) Design and validation of a robust multiplex polymerase chain reaction assay for MAT idiomorph within the Fusarium fujikuroi species complex. Mycologia 111:772–781. https://doi.org/10.1080/00275514.2019.1649956

    Article  CAS  PubMed  Google Scholar 

  9. Jurgenson JE, Zeller KA, Leslie JF (2002) Expanded genetic map of Gibberella moniliformis (Fusarium verticillioides). Appl Environ Microbiol 68:1972–1979. https://doi.org/10.1128/AEM.68.4.1972-1979.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Hove F, Waalwijk C, Logrieco A et al (2011) Gibberella musae (Fusarium musae) sp. nov., a recently discovered species from banana is sister to F. verticillioides. Mycologia 103:570–585. https://doi.org/10.3852/10-038

    Article  CAS  PubMed  Google Scholar 

  11. Adame-García J, Rodriguez-Guerra R, Iglesias-Andreu LG et al (2015) Molecular identification and pathogenic variation of fusarium species isolated from Vanilla planifolia in Papantla Mexico. Bot Sci 93:669–678. https://doi.org/10.17129/botsci.142

    Article  Google Scholar 

  12. Ibrahim NF, Mohd MH, Mohamed Nor NMI, Zakaria L (2017) Characterization of Fusarium spp. associated with pineapple fruit rot and leaf spot in Peninsular Malaysia. J Phytopathol 165:718–726. https://doi.org/10.1111/jph.12611

    Article  CAS  Google Scholar 

  13. Alberto RT (2014) Pathological response and biochemical changes in Allium cepa L. (bulb onions) infected with anthracnose-twister disease. Plant Pathol Quar 4:23–31. https://doi.org/10.5943/ppq/4/1/4

    Article  Google Scholar 

  14. Martínez-Bolaños M, Téliz-Ortiz D, Mora-Aguilera A et al (2015) Antracnosis (Colletotrichum gloeosporioides Penz.) del fruto de litchi (Litchi chinensis Soon.)en Oaxaca. México Rev Mex Fitopatol 33:140–155

    Google Scholar 

  15. Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6:71–79. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  PubMed  Google Scholar 

  16. Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol 23:277–294. https://doi.org/10.1016/0168-1605(94)90157-0

    Article  CAS  PubMed  Google Scholar 

  17. Costa LCB, Pinto JEBP, Bertolucci SKV et al (2015) In vitro antifungal activity of Ocimum selloi essential oil and methylchavicol against phytopathogenic fungi. Rev Ciência Agronômica 46:428–435

    Google Scholar 

  18. Aguilar-Zárate P, Wong-Paz JE, Michel M et al (2017) Characterisation of pomegranate-husk polyphenols and semi-preparative fractionation of punicalagin. Phytochem Anal 28:433–438. https://doi.org/10.1002/pca.2691

    Article  CAS  PubMed  Google Scholar 

  19. Gibson DM, Donzelli BGG, Krasnoff SB, Keyhani NO (2014) Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat Prod Rep 31:1287–1305. https://doi.org/10.1039/C4NP00054D

    Article  CAS  PubMed  Google Scholar 

  20. Davis R, John P (2018) Application of Taguchi-based design of experiments for industrial chemical processes. In: Silva V (ed) Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes. IntechOpen, Rijeka, pp 137–155

  21. Manzoor A, Qazi JI, Haq I, ul, et al (2017) Significantly enhanced biomass production of a novel bio-therapeutic strain Lactobacillus plantarum (AS-14) by developing low cost media cultivation strategy. J Biol Eng 11:17. https://doi.org/10.1186/s13036-017-0059-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chenthamarakshan A, Parambayil N, Miziriya N et al (2017) Optimization of laccase production from Marasmiellus palmivorus LA1 by Taguchi method of Design of experiments. BMC Biotechnol 17:12. https://doi.org/10.1186/s12896-017-0333-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shehata AN, El Aty AAA (2014) Optimization of Process parameters by statistical experimental designs for the production of naringinase enzyme by marine fungi. Int J Chem Eng 2014:1–10. https://doi.org/10.1155/2014/273523

    Article  CAS  Google Scholar 

  24. Aguilar-Zarate P, Cruz-Hernandez MA, Montañez JC, et al (2014) Enhancement of tannase production by Lactobacillus plantarum CIR1: validation in gas-lift bioreactor. Bioprocess BiosystEng 37https://doi.org/10.1007/s00449-014-1208-3

  25. EL-Moslamy SH, Elkady MF, Rezk AH, Abdel-Fattah YR (2017) Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens. Sci Rep 7:45297. https://doi.org/10.1038/srep45297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Velhal SG, Latpate RV, Kulkami SD, Jaybhaye RG (2015) Taguchi design for parameter optimization of size-controlled synthesis of silver nanoparticles. Int J Emerg Technol Comput Appl Sci 12:144–149

    Google Scholar 

  27. Katata-Seru L, Lebepe TC, Aremu OS, Bahadur I (2017) Application of Taguchi method to optimize garlic essential oil nanoemulsions. J Mol Liq 244:279–284. https://doi.org/10.1016/j.molliq.2017.09.007

    Article  CAS  Google Scholar 

  28. Dutta D, Das MD (2017) Effect of C/N ratio and microelements on nutrient dynamics and cell morphology in submerged fermentation of Aspergillus giganteus MTCC 8408 using Taguchi DOE. 3 Biotech 7:34. https://doi.org/10.1007/s13205-017-0611-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Petlamul W, Prasertsan P (2014) Medium optimization for production of Beauveria bassiana BNBCRC spores from biohydrogen effluent of palm oil mill using Taguchi design. Int J Biosci Biochem Bioinforma 4:106–109

    CAS  Google Scholar 

  30. Gunasekaran S, Poorniammal R (2008) Optimization of fermentation conditions for red pigment production from Penicillium sp. under submerged cultivation. African J Biotechnol 7:1894–1898

    Article  CAS  Google Scholar 

  31. Venkatachalam M, Shum-Chéong-Sing A, Dufossé L, Fouillaud M (2020) Statistical optimization of the physico-chemical parameters for pigment production in submerged fermentation of Talaromyces albobiverticillius 30548. Microorganisms 8:711. https://doi.org/10.3390/microorganisms8050711

    Article  CAS  PubMed Central  Google Scholar 

  32. Venkata Dasu V, Panda T, Chidambaram M (2003) Determination of significant parameters for improved griseofulvin production in a batch bioreactor by Taguchi’s method. Process Biochem 38:877–880. https://doi.org/10.1016/S0032-9592(02)00068-7

    Article  CAS  Google Scholar 

  33. Mitrović IŽ, Grahovac JA, Dodić JM, et al (2017) Effect of agitation rate on the production of antifungal metabolites by Streptomyces hygroscopicus in a lab-scale bioreactor. Acta Period Technol 231–244https://doi.org/10.2298/APT1748231M

  34. Ortiz-Urquiza A, Keyhani NO (2016) Molecular genetics of Beauveria bassiana infection of insects. In: Lovett B, St Leger R (eds) Genetics and Molecular Biology of Entomopathogenic Fungi. Academic Press, pp 165–249

  35. Mascarin GM, Jackson MA, Kobori NN et al (2015) Liquid culture fermentation for rapid production of desiccation tolerant blastospores of Beauveria bassiana and Isaria fumosorosea strains. J Invertebr Pathol 127:11–20. https://doi.org/10.1016/j.jip.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  36. Tudzynski B (2014) Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 5:1–15

    Article  Google Scholar 

  37. Vázquez-Sánchez AY, Aguilar-Zárate P, Muñiz-Márquez DB et al (2019) Effect of ultrasound treatment on the extraction of antioxidants from Ardisia compressa Kunth fruits and identification of phytochemicals by HPLC-ESI-MS. Heliyon 5:e03058. https://doi.org/10.1016/j.heliyon.2019.e03058

    Article  PubMed  PubMed Central  Google Scholar 

  38. Amin GA, Youssef NA, Bazaid S, Saleh WD (2010) Assessment of insecticidal activity of red pigment produced by the fungus Beauveria bassiana. World J Microbiol Biotechnol 26:2263–2268. https://doi.org/10.1007/s11274-010-0416-5

    Article  CAS  Google Scholar 

  39. Strasser H, Vey A, Butt TM (2000) Are there any risks in using entomopathogenic fungi for pest control, with particular feference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Technol 10:717–735. https://doi.org/10.1080/09583150020011690

    Article  Google Scholar 

  40. Jeffs LB, Khachatourians GG (1997) Toxic properties of Beauveria pigments on erythrocyte membranes. Toxicon 35:1351–1356. https://doi.org/10.1016/S0041-0101(97)00025-1

    Article  CAS  PubMed  Google Scholar 

  41. Meazza G, Dayan FE, Wedge DE (2003) Activity of quinones on colletotrichum species. J Agric Food Chem 51:3824–3828. https://doi.org/10.1021/jf0343229

    Article  CAS  PubMed  Google Scholar 

  42. Feng P, Shang Y, Cen K, Wang C (2015) Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proc Natl Acad Sci U S A 112:11365–11370. https://doi.org/10.1073/pnas.1503200112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nagaoka T, Nakata K, Kouno K, Ando T (2004) Antifungal activity of oosporein from an antagonistic fungus against Phytophthora infestans. Z Naturforsch C 59:302–304. https://doi.org/10.1515/znc-2004-3-432

    Article  CAS  PubMed  Google Scholar 

  44. Mao B, Huang C, Yang G et al (2010) Separation and determination of the bioactivity of oosporein from Chaetomium cupreum. African J Biotechnol 9:5955–5961. https://doi.org/10.5897/AJB09.1992

    Article  CAS  Google Scholar 

  45. Alurappa R, Bojegowda MRM, Kumar V et al (2014) Characterisation and bioactivity of oosporein produced by endophytic fungus Cochliobolus kusanoi isolated from Nerium oleander L. Nat Prod Res 28:2217–2220

    Article  CAS  Google Scholar 

  46. Strasser H, Abendstein D, Stuppner H, Butt TM (2000) Monitoring the distribution of secondary metabolites produced by the entomogenous fungus Beauveria brongniartii with particular reference to oosporein. Mycol Res 104:1227–1233. https://doi.org/10.1017/S0953756200002963

    Article  CAS  Google Scholar 

  47. da Costa Souza PN, Grigoletto TLB, de Moraes LAB et al (2016) Production and chemical characterization of pigments in filamentous fungi. Microbiology 162:12–22

    Article  Google Scholar 

  48. Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography–UV–mass spectrometry methodology. J Chromatogr A 1002:111–136

    Article  CAS  Google Scholar 

  49. Ortiz-Urquiza A, Keyhani NO (2015) Stress response signaling and virulence: insights from entomopathogenic fungi. Curr Genet 61:239–249. https://doi.org/10.1007/s00294-014-0439-9

    Article  CAS  PubMed  Google Scholar 

  50. Ramesha A, Venkataramana M, Nirmaladevi D et al (2015) Cytotoxic effects of oosporein isolated from endophytic fungus Cochliobolus kusanoi. Front Microbiol 6:870

    Article  Google Scholar 

  51. He G, Yan J, Wu X-Y et al (2012) Oosporein from Tremella fuciformis. Acta Crystallogr Sect E Struct Rep Online 68:o1231. https://doi.org/10.1107/S1600536812012950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang X, Hu Q, Weng Q (2019) Secondary metabolites (SMs) of Isaria cicadae and Isaria tenuipes. RSC Adv 9:172–184

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank to Tecnológico Nacional de México and to the Autonomous University of Nuevo León for the financial support.

Funding

The work was partially financed by the Autonomous University of Nuevo León with the project PAICyT-UANL (CT1525-21) and by Tecnológico Nacional de México with the projects No. 6691.18-P and 10394.21-P.

Author information

Authors and Affiliations

Authors

Contributions

JGAV and MLCI performed the experimental work, data analysis, and wrote the manuscript. MRM, JEWP, DBMM, and RRM provided lab resources and reviewed the original draft. JAAV performed the chromatographic analysis. GCGMA and PAZ conceptualized the work, data analysis, and fund acquisition. All the authors approved the final manuscript.

Corresponding authors

Correspondence to Pedro Aguilar-Zárate or Guillermo Cristian G. Martínez-Ávila.

Ethics declarations

Ethics approval

This article does not contain experiments with humans or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Melissa Fontes Landell

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila-Hernández, J.G., Aguilar-Zárate, P., Carrillo-Inungaray, M.L. et al. The secondary metabolites from Beauveria bassiana PQ2 inhibit the growth and spore germination of Gibberella moniliformis LIA. Braz J Microbiol 53, 143–152 (2022). https://doi.org/10.1007/s42770-021-00668-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00668-z

Keywords

Navigation