Skip to main content

Advertisement

Log in

A putative PCV3-associated disease in piglets from Southern Brazil

  • Veterinary Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Porcine circovirus type 3 (PCV3) is widely distributed worldwide, and its association with clinical disease in pigs has been studied in recent years. This study describes a novel PCV3-associated clinical disease in piglets from Brazil. Since September 2020, we received 48 piglets with large caudally rotated ears, weakness, and dyspnea. Most piglets were from gilts and died 1–5 days after birth. Two piglets that presented similar clinical signs and survived until 35–60 days had a marked decrease in growth rate. At post-mortem examination, the lungs did not collapse due to marked interlobular edema. Microscopically, the main feature was multisystemic vasculitis characterized by lymphocytes and plasma cells infiltrating and disrupting the wall of vessels, lymphohistiocytic interstitial pneumonia, myocarditis, and encephalitis. Viral replication was confirmed in these lesions through in situ hybridization (ISH-RNA). Seventeen cases were positive for PCV3 in PCR analysis, and all samples tested negative for porcine circovirus (PCV1, and PCV2); porcine parvovirus (PPV1, 2, 5, and 6); atypical porcine pestivirus (APPV); porcine reproductive and respiratory syndrome (PRRSV); and ovine herpesvirus-2 (OvHV-2). Phylogenetic analysis of the ORF2 sequence from five different pig farms showed that the PCV3a clade is circulating among Brazil’s swineherds and causing neonatal piglet losses. This is the first report of PCV3a-associated disease in neonatal pigs from farms in Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Availability of data and material

All data and materials are available.

References

  1. Arruda B, Piñeyro P, Derscheid R, Hause B, Byers E, Dion K, Long D, Sievers C, Tangen J, Williams T, Schwartz K (2019) PCV3-associated disease in the United States swine herd. Emerg Microbes Infect 8:684–698. https://doi.org/10.1080/22221751.2019.1613176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baxter SIF, Pow I, Bridgen A, Reid HW (1993) PCR detection of the sheep-associated agent of malignant catarrhal fever. Arch Virol 132:145–159

    Article  CAS  Google Scholar 

  3. Beer M, Wernike K, Dräger C, Höper D, Pohlmann A, Bergermann C, Schröder C, Klinkhammer S, Blome S, Hoffman B (2017) High prevalence of highly variable atypical porcine pestiviruses found in Germany. Transbound Emerg Dis 64:e22–e26. https://doi.org/10.1111/tbed.12532

    Article  CAS  PubMed  Google Scholar 

  4. Biagini P, Bendinelli M, Hino S, Kakkola L, Mankertz A, Niel C, Okamoto H, Raidal S, Teo CG, m Todd D (2012) Family Circoviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: classification and nomenclature of viruses: ninth report of the International Committee on Taxonomy of Viruses. Academic Press, London, pp 343–349

    Google Scholar 

  5. Christopher-Hennings J, Nelson EA, Nelson JK et al (1995) Detection of porcine reproductive and respiratory syndrome virus in boar semen by PCR. J Clin Microbiol 33(7):1730–1734

    Article  CAS  Google Scholar 

  6. Ciacci-Zanella LR (2016) Doença de Aujeszky. In: Megid J, Ribeiro MG, Paes AC (eds) Doenças infecciosas em animais de produção e companhia, 1st edn. Roca, Rio de Janeiro, pp 598–602

    Google Scholar 

  7. Ciacci-Zanella JR, Amaral AL, Ventura LV, Mores N, Bortoluzzi H (2008) Erradicação da doença de Aujeszky em Santa Catarina: importância da condição sanitária das leitoas de reposição. Ciênc Rural 38(3):749–754. https://doi.org/10.1590/S0103-84782008000300024

    Article  Google Scholar 

  8. De Conti ER, Resende TP, Marshall-Lund L, Rovira A, Vannucci FA (2021) Histological lesions and replication sites of PCV3 in naturally infected pigs. Animals 11(6):1520. https://doi.org/10.3390/ani11061520

    Article  PubMed  PubMed Central  Google Scholar 

  9. Faccini S, Barbieri I, Gillioli A, Sala G, Gibelli LR, Moreno A, Sacchi C, Rosignoli C, Franzini G, Nigrelli A (2017) Detection and genetic characterization of Porcine circovirus type 3 in Italy. Transbound Emerg Dis 64(6):1661–1664. https://doi.org/10.1111/tbed.12714

    Article  CAS  PubMed  Google Scholar 

  10. França TN, Ribeiro CT, Cunha BM, Peixoto PV (2005) Circovirose suína. Pesq Vet Bras 25(2):59–72

    Article  Google Scholar 

  11. Franzo G, Delwart E, Fux R, Hause B, Su S, Zhou J, Segalés J (2020) Genotyping porcine circovirus 3 (PCV-3) nowadays: does it make sense? Viruses 12(3):265. https://doi.org/10.3390/v12030265

    Article  CAS  PubMed Central  Google Scholar 

  12. Fu X, Fang B, Mal J, Liu Y, Bul D, Zhou P, Wang H, Jia K, Zhang G (2017) Insights into the epidemic characteristics and evolutionary history of the novel porcine circovirus type 3 in southern China. Transbound Emerg Dis 65(2):296-e303. https://doi.org/10.1111/tbed.12752

    Article  CAS  Google Scholar 

  13. Fux R, Söckler C, Link EK, Renken C, Krejci R, Sutter G, Ritzmann M, Eddicks M (2018) Full genome characterization of porcine circovirus type 3 isolates reveals the existence of two distinct groups of virus strains. Virol J 15:25. https://doi.org/10.1186/s12985-018-0929-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hayashi S, Ohshima Y, Furuya Y, Nagao A, Oroku K, Tsutsumi N, Sasakawa C, Sato T (2018) First detection of porcine circovirus type 3 in Japan. J Vet Med Sci 80(9):1468–1472. https://doi.org/10.1292/jvms.18-0079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kedkovid R, Woonwonga Y, Arunoratg J, Sirisereewana C, Sangpratuma N, Kesdangsakonwutb S, Tummaruke P, Teankumb K, Assavacheepf P, Jittimaneed S, Thanawongnuwechb R (2018) Porcine circovirus type 3 (PCV3) shedding in sow colostrum. Vet Microbiol 220:12–17. https://doi.org/10.1016/j.vetmic.2018.04.032

    Article  PubMed  Google Scholar 

  16. Kim S-H, Park J-Y, Jung J-Y, Kim H-K, Park Y-R, Lee K-K, Lyoo YS, Yeo SG, Park CK (2018) Detection and genetic characterization of porcine circovirus 3 from aborted fetuses and pigs with respiratory disease in Korea. J Vet Sci 19(5):721–724. https://doi.org/10.4142/jvs.2018.19.5.721

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ku X, Chen F, Li P, Wang Y, Yu X, Fan S, Qian P, Wu M, He Q (2017) Identification and genetic characterization of porcine circovirus type 3 in China. Transbound Emerg Dis 64(3):703–708. https://doi.org/10.1111/tbed.12638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kwon T, Yoo SJ, Park CK, Lyoo YS (2017) Prevalence of novel porcine circovirus 3 in Korean pig populations. Vet Microbiol 207:178–180. https://doi.org/10.1016/j.vetmic.2017.06.013

    Article  PubMed  Google Scholar 

  19. Li G, He W, Zhu H, Bi Y, Wang R, Xing G, Zhang C, Zhou J, Yuen K-Y, Gao GF, Su S (2018) Origin, genetic diversity, and evolutionary dynamics of novel porcine circovirus 3. Adv Sci 5(9):1800275. https://doi.org/10.1002/advs.201800275

    Article  CAS  Google Scholar 

  20. Li L, Kapoor A, Slikas B et al (2010) Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. Virol J 84(4):1674–1682. https://doi.org/10.1128/JVI.02109-09

    Article  CAS  Google Scholar 

  21. Melo MR, Martins AR, Barbosa IV, Romano P, Shcolnik W (2010) Coleta, transporte e armazenamento de amostras para diagnóstico molecular. J Bras Patol Med Lab 46(5):375–381. https://doi.org/10.1590/S1676-24442010000500006

    Article  CAS  Google Scholar 

  22. Opriessnig T, Janke BH, Halbur PG (2006) Cardiovascular lesions in pigs naturally or experimentally infected with porcine circovirus type 2. J Comp Pathol 134:105–110. https://doi.org/10.1016/j.jcpa.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  23. Palinski R, Piñeyro P, Shang P, Yuan F, Guo R, Fang Y, Byers E, Hause BM (2017) A novel porcine circovirus distantly related to known circoviruses is associated with porcine dermatitis and nephropathy syndrome and reproductive failure. Virol J 91(1):e01879-e1916. https://doi.org/10.1128/JVI.01879-16

    Article  CAS  Google Scholar 

  24. Phan TG, Giannitti F, Rossow S, Marthaler D, Knutson T, Li L, Deng X, Resende T, Vanucci FA, Delwart E (2016) Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation. Virol J 13(1):184. https://doi.org/10.1186/s12985-016-0642-z

    Article  PubMed  PubMed Central  Google Scholar 

  25. Santos ACD, Cezario KC, Bennermann PE, Machado SA, Martins M (2020) Full-genome sequences of porcine circovirus 3 (PCV3) and high prevalence in mummified fetuses from commercial farms in Brazil. Microb Pathog 141:104027. https://doi.org/10.1016/j.micpath.2020.104027

    Article  CAS  Google Scholar 

  26. Souza CK, Streck AF, Gonçalves KR, Pinto LD, Ravazzolo AP, Barcellos DESN, Canal CW (2016) Phylogenetic characterization of the first Ungulate tetraparvovirus 2 detected in pigs in Brazil. Braz J Microbiol 47:513–517. https://doi.org/10.1016/j.bjm.2016.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stadejek T, Wozniak A, Milek D, Biernacka K (2017) First detection of porcine circovirus type 3 on commercial pig farms in Poland. Transbound Emerg Dis 64:1350–1353. https://doi.org/10.1111/tbed.12672

    Article  CAS  PubMed  Google Scholar 

  28. Tochetto C, Lima DA, Varela APM et al (2018) Full-genome sequence of porcine circovirus type 3 recovered from serum of sows with stillbirths in Brazil. Transbound Emerg Dis 65:5–9. https://doi.org/10.1111/tbed.12735

    Article  CAS  PubMed  Google Scholar 

  29. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielsen A, Wu X, Vo H-T, Ma X-J, Luo Y (2012) RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn 14:22–29. https://doi.org/10.1016/j.jmoldx.2011.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Noll L, Lu N, Porter E, Stoy C, Zheng W, Liu X, Peddireddi L, Niederwerder M, Bai J (2019) Genetic diversity and prevalence of porcine circovirus type 3 (PCV3) and type 2 (PCV2) in the Midwest of the USA during 2016–2018. Transbound Emerg Dis 67:1284–1294. https://doi.org/10.1111/tbed.13467

    Article  CAS  Google Scholar 

  31. Wu G, Bazer FW, Wallace JM, Spencer TE (2006) Board-invited review: intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337. https://doi.org/10.2527/jas.2006-156

    Article  CAS  PubMed  Google Scholar 

  32. Ye X, Berg M, Fossum C, Wallgren P, Blomström A-L (2018) Detection and genetic characterisation of porcine circovirus 3 from pigs in Sweden. Virus Genes 54:466–469. https://doi.org/10.1007/s11262-018-1553-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yuzhakov AG, Raev SA, Alekseev KP, Grebennikova TV, Verkhovsky OA, Zaberezhny AD, Aliper TI (2018) First detection and full genome sequence of porcine circovirus type 3 in Russia. Virus Genes 54:608–611. https://doi.org/10.1007/s11262-018-1582-z

    Article  CAS  PubMed  Google Scholar 

  34. Zhai SL, Zhou X, Zhang H et al (2017) Comparative epidemiology of porcine circovirus type 3 in pigs with different clinical presentations. Virol J 14(1):222. https://doi.org/10.1186/s12985-017-0892-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zhao D, Wang X, Gao Q, Huan C, Wang W, Gao S, Liu X (2018) Retrospective survey and phylogenetic analysis of porcine circovirus type 3 in Jiangsu province, China, 2008 to 2017. Arch Virol 163:2531–2538. https://doi.org/10.1007/s00705-018-3870-2

    Article  CAS  PubMed  Google Scholar 

  36. Zheng S, Wu X, Zhang L et al (2017) The occurrence of porcine circovirus 3 without clinical infection signs in Shandong Province. Transbound Emerg Dis 64:1337–1341. https://doi.org/10.1111/tbed.12667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Financial support was supplied by CNPq and CAPES — Finance Code 001, Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS), and Pró-reitoria de Pesquisa da Universidade Federal do Rio Grande do Sul (Propesq/UFRGS).

Author information

Authors and Affiliations

Authors

Contributions

Franciéli Adriane Molossi drafted the study and made substantial contributions to the interpretation of data. Bruno Albuquerque de Almeida, Bianca Santana de Cecco, Luciano Brandalise, Gustavo Manoel Rigueira Simão, Saulo Petinatti Pavarini, and David Driemeier made substantial contributions to the interpretation of data and revised it critically for important intellectual content. Mariana Soares da Silva, Ana Cristina Sbaraini Mósena, and Cláudio Wageck Canal performed the viral analysis and made substantial contributions to the manuscript. Fabio Vanucci performed ISH and made substantial contributions to the final version of the manuscript. All authors approved the version to be published.

Corresponding author

Correspondence to Franciéli Adriane Molossi.

Ethics declarations

Ethics approval

All cases described herein occurred spontaneously, with no experimentation, inoculation, or treatment of live animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Fernando R. Spilki

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15.1 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molossi, F.A., de Almeida, B.A., de Cecco, B.S. et al. A putative PCV3-associated disease in piglets from Southern Brazil. Braz J Microbiol 53, 491–498 (2022). https://doi.org/10.1007/s42770-021-00644-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00644-7

Keywords

Navigation