Skip to main content

Advertisement

Log in

Enhanced antibacterial effect against Enterococcus faecalis by silver ions plus Triton X-100 with low concentrations and cytotoxicity

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Enterococcus faecalis (E. faecalis) is commonly considered to be one of chief culprits of secondary and persistent root canal infections. As antibiotic resistance has become a global issue, in order to reduce the use of antibiotics, metal ions have recently been widely used as an alternative. Silver ions (Ag+) have been proved to be a strong bactericide but with high cytotoxicity and discoloration property. Triton X-100 (TX-100) and Ag+ were co-used for the first time as a clinical intracanal medication to obtain both enhanced antibacterial effect and low cytotoxicity. The synergistic antibacterial effect of TX-100 + Ag+ was tested on both planktonic and biofilm-resident E. faecalis on dentine. And the cytotoxicity was tested on MC3T3-E1 cells. Results confirmed the antibacterial activity against both planktonic and biofilm-resident E. faecalis was dramatically improved after TX-100 incorporation. TX-100 and Ag+ mixture demonstrated a similar inhibitory effect as the 2% chlorhexidine (CHX), while the cytotoxicity was much lower than 2% CHX (p < 0.05). In conclusion, TX-100 + Ag+ mixture might be developed into a new effective intracanal medication as the 2% CHX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

Code availability

Not applicable.

References

  1. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB (2006) Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 32:93–98. https://doi.org/10.1016/j.joen.2005.10.049

    Article  PubMed  Google Scholar 

  2. Flahaut S, Hartke A, Giard JC, Auffray Y (1997) Alkaline stress response in Enterococcus faecalis: adaptation, cross-protection, and changes in protein synthesis. Appl Environ Microbiol 63:812–814

    Article  CAS  Google Scholar 

  3. Hunt CP (1998) The emergence of enterococci as a cause of nosocomial infection. Br J Biomed Sci 55:149–156

    CAS  PubMed  Google Scholar 

  4. Kayaoglu G, Orstavik D (2004) Virulence factors of Enterococcus faecalis: relationship to endodontic disease. Crit Rev Oral Biol Med 15:308–320

    Article  Google Scholar 

  5. Tendolkar PM, Baghdayan AS, Shankar N (2003) Pathogenic enterococci: new developments in the 21st century. Cell Mol Life Sci 60:2622–2636. https://doi.org/10.1007/s00018-003-3138-0

    Article  CAS  PubMed  Google Scholar 

  6. Gomes BP, Vianna ME, Zaia AA, Almeida JF, Souza-Filho FJ, Ferraz CC (2013) Chlorhexidine in endodontics. Braz Dent J 24:89–102. https://doi.org/10.1590/0103-6440201302188

    Article  PubMed  Google Scholar 

  7. Sudbrack TP, Archilha NL, Itri R, Riske KA (2011) Observing the solubilization of lipid bilayers by detergents with optical microscopy of GUVs. J Phys Chem B 115:269–277. https://doi.org/10.1021/jp108653e

    Article  CAS  PubMed  Google Scholar 

  8. Goncalves LS, Rodrigues RCV, Andrade CV, Soares RG, Vettore MV (2016) The effect of sodium hypochlorite and chlorhexidine as irrigant solutions for root canal disinfection: a systematic review of clinical trials. J Endod 42:527–532. https://doi.org/10.1016/j.joen.2015.12.021

    Article  PubMed  Google Scholar 

  9. Gjermo P (1974) Chlorhexidine in dental practice. J Clin Periodontol 1:143–152. https://doi.org/10.1111/j.1600-051x.1974.tb01250.x

    Article  CAS  PubMed  Google Scholar 

  10. Cieplik F, Jakubovics NS, Buchalla W, Maisch T, Hellwig E, Al-Ahmad A (2019) Resistance toward chlorhexidine in oral bacteria—is there cause for concern? Front Microbiol 10:587. https://doi.org/10.3389/fmicb.2019.00587

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lessa FC, Aranha AM, Nogueira I, Giro EM, Hebling J, Costa CA (2010) Toxicity of chlorhexidine on odontoblast-like cells. J Appl Oral Sci 18:50–58. https://doi.org/10.1590/s1678-77572010000100010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carita AC, Mattei B, Domingues CC, de Paula E, Riske KA (2017) Effect of Triton X-100 on raft-like lipid mixtures: phase separation and selective solubilization. Langmuir 33:7312–7321. https://doi.org/10.1021/acs.langmuir.7b01134

    Article  CAS  PubMed  Google Scholar 

  13. Rodi PM, Bocco Gianello MD, Corregido MC, Gennaro AM (2014) Comparative study of the interaction of CHAPS and Triton X-100 with the erythrocyte membrane. Biochim Biophys Acta 1838:859–866. https://doi.org/10.1016/j.bbamem.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  14. Lahiri A, Ananthalakshmi TK, Nagarajan AG, Ray S, Chakravortty D (2011) TolA mediates the differential detergent resistance pattern between the Salmonella enterica subsp enterica serovars Typhi and Typhimurium. Microbiology-Sgm 157:1402–1415. https://doi.org/10.1099/mic.0.046565-0

    Article  CAS  Google Scholar 

  15. Cho G, Kwon J, Soh SM, Jang H, Mitchell RJ (2019) Sensitivity of predatory bacteria to different surfactants and their application to check bacterial predation. Appl Microbiol Biotechnol 103:8169–8178. https://doi.org/10.1007/s00253-019-10069-w

    Article  CAS  PubMed  Google Scholar 

  16. Fan W, Sun Q, Li Y, Tay FR, Fan B (2018) Synergistic mechanism of Ag(+)-Zn(2+) in anti-bacterial activity against Enterococcus faecalis and its application against dentin infection. J Nanobiotechnol 16:10. https://doi.org/10.1186/s12951-018-0336-3

    Article  CAS  Google Scholar 

  17. Rosenman KD, Moss A, Kon S (1979) Argyria: clinical implications of exposure to silver nitrate and silver oxide. J Occup Med 21:430–435

    CAS  PubMed  Google Scholar 

  18. Wan AT, Conyers RA, Coombs CJ, Masterton JP (1991) Determination of silver in blood, urine, and tissues of volunteers and burn patients. Clin Chem 37:1683–1687

    Article  CAS  Google Scholar 

  19. Cui J, Duan M, Sun Q, Fan W (2020) Simvastatin decreases the silver resistance of E. faecalis through compromising the entrapping function of extracellular polymeric substances against silver. World J Microbiol Biotechnol 36:54. https://doi.org/10.1007/s11274-020-02830-5

    Article  CAS  PubMed  Google Scholar 

  20. Lu MM, Wang QJ, Chang ZM, Wang Z, Zheng X, Shao D, Zhou YM (2017) Synergistic bactericidal activity of chlorhexidine-loaded, silver-decorated mesoporous silica nanoparticles. Int J Nanomedicine 12:3577–3589. https://doi.org/10.2147/IJN.S133846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li R, Chen J, Cesario TC, Wang X, Yuan JS, Rentzepis PM (2016) Synergistic reaction of silver nitrate, silver nanoparticles, and methylene blue against bacteria. Proc Natl Acad Sci USA 113:13612–13617. https://doi.org/10.1073/pnas.1611193113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu MM, Ge Y, Qiu J, Shao D, Zhang Y, Bai J, Tang CB (2018) Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms. Int J Nanomedicine 13:7697–7709. https://doi.org/10.2147/IJN.S181168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fan W, Duan M, Sun Q, Fan B (2020) Simvastatin enhanced antimicrobial effect of Ag(+) against E. faecalis infection of dentine through PLGA co-delivery submicron particles. J Biomater Sci Polym Ed 31:2331–2346. https://doi.org/10.1080/09205063.2020.1811188

    Article  CAS  PubMed  Google Scholar 

  24. Fan W, Li Y, Sun Q, Ma T, Fan B (2016) Calcium-silicate mesoporous nanoparticles loaded with chlorhexidine for both anti-Enterococcus faecalis and mineralization properties. J Nanobiotechnol 14:72. https://doi.org/10.1186/s12951-016-0224-7

    Article  CAS  Google Scholar 

  25. Gomes BP, Ferraz CC, Vianna ME, Berber VB, Teixeira FB, Souza-Filho FJ (2001) In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. Int Endod J 34:424–428. https://doi.org/10.1046/j.1365-2591.2001.00410.x

    Article  CAS  PubMed  Google Scholar 

  26. Randall CP, Oyama LB, Bostock JM, Chopra I, ONeill AJ (2013) The silver cation (Ag): antistaphylococcal activity, mode of action and resistance studies. J Antimicrob Chemother 68:131–138. https://doi.org/10.1093/jac/dks372

    Article  CAS  PubMed  Google Scholar 

  27. Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199. https://doi.org/10.1007/BF01569902

    Article  CAS  PubMed  Google Scholar 

  28. Kedziora A, Speruda M, Krzyzewska E, Rybka J, Lukowiak A, Bugla-Ploskonska G (2018) Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci 19:444. https://doi.org/10.3390/ijms19020444

    Article  CAS  PubMed Central  Google Scholar 

  29. Colavita F, Quartu S, Lalle E, Bordi L, Lapa D, Meschi S, Castilletti C (2017) Evaluation of the inactivation effect of Triton X-100 on Ebola virus infectivity. J Clin Virol 86:27–30. https://doi.org/10.1016/j.jcv.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  30. Lina B, Fletcher MA, Valette M, Saliou P, Aymard M (2000) A TritonX-100-split virion influenza vaccine is safe and fulfills the committee for proprietary medicinal products (CPMP) recommendations for the European community for immunogenicity, in children, adults and the elderly. Biologicals 28:95–103. https://doi.org/10.1006/biol.2000.0245

    Article  CAS  PubMed  Google Scholar 

  31. Komatsuzawa H, Sugai M, Shirai C, Suzuki J, Hiramatsu K, Suginaka H (1995) Triton X-100 alters the resistance level of methicillin-resistant Staphylococcus aureus to oxacillin. FEMS Microbiol Lett 134:209–212. https://doi.org/10.1111/j.1574-6968.1995.tb07939.x

    Article  CAS  PubMed  Google Scholar 

  32. Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G (1994) Biofilms, the customized microniche. J Bacteriol 176:2137–2142. https://doi.org/10.1128/jb.176.8.2137-2142.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clegg MS, Vertucci FJ, Walker C, Belanger M, Britto LR (2006) The effect of exposure to irrigant solutions on apical dentin biofilms in vitro. J Endod 32:434–437. https://doi.org/10.1016/j.joen.2005.07.002

    Article  CAS  PubMed  Google Scholar 

  34. Trevino EG, Patwardhan AN, Henry MA, Perry G, Dybdal-Hargreaves N, Hargreaves KM, Diogenes A (2011) Effect of irrigants on the survival of human stem cells of the apical papilla in a platelet-rich plasma scaffold in human root tips. J Endod 37:1109–1115. https://doi.org/10.1016/j.joen.2011.05.013

    Article  PubMed  Google Scholar 

Download references

Funding

This study was financially supported by the National Natural Science Foundation of China (Grant No. 81570969&81771067) and Top Youth Talent in Medicine Programme of Hubei Province, China.

Author information

Authors and Affiliations

Authors

Contributions

Mengting Duan performed the experiment and prepared the manuscript; Qing Sun helped carry out the experiment and data analysis; Wei Fan and Bing Fan are the corresponding authors who supervised the study, provided part of the funding support, designed the experiment, and revised the manuscript.

Corresponding authors

Correspondence to Wei Fan or Bing Fan.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors approved and agreed the publication of this manuscript.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, M., Sun, Q., Fan, W. et al. Enhanced antibacterial effect against Enterococcus faecalis by silver ions plus Triton X-100 with low concentrations and cytotoxicity. Braz J Microbiol 53, 161–169 (2022). https://doi.org/10.1007/s42770-021-00643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00643-8

Keywords

Navigation