Skip to main content
Log in

Biofilm formation and antibiotic susceptibility of Staphylococcus and Bacillus species isolated from human allogeneic skin

  • Clinical Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Human skin banks around the world face a serious problem with the high number of allogeneic skins that are discarded and cannot be used for grafting due to persistent bacterial contamination even after antibiotic treatment. The biofilm formation capacity of these microorganisms may contribute to the antibiotic tolerance; however, this is not yet widely discussed in the literature. Thisstudy analyzed bacterial strains isolated from allogeneic human skin samples,which were obtained from a hospital skin bank that had already been discardeddue to microbial contamination. Biofilm formation and susceptibility topenicillin, tetracycline, and gentamicin were evaluated by crystal violetbiomass quantification and determination of the minimum inhibitoryconcentration (MIC), minimum biofilm inhibitory concentration (MBIC), andminimum biofilm eradication concentration (MBEC) by the broth microdilutionmethod with resazurin dye. A total of 216 bacterial strains were evaluated, and204 (94.45%) of them were classified as biofilm formers with varying degrees ofadhesion. MBICs were at least 512 times higher than MICs, and MBECs were atleast 512 times higher than MBICs. Thus, the presence of biofilm in allogeneicskin likely contributes to the inefficiency of the applied treatments as antibiotictolerance is known to be much higher when bacteria are in the biofilmconformation. Thus, antibiotic treatment protocols in skin banks shouldconsider biofilm formation and should include compounds with antibiofilmaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnston C, Callum J, Mohr J et al (2016) Disinfection of human skin allografts in tissue banking: a systematic review report. Cell Tissue Bank 17:585–592. https://doi.org/10.1007/s10561-016-9569-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Singh R, Singh D, Singh A (2016) Radiation sterilization of tissue allografts: a review World. J Radiol 8:355–369. https://doi.org/10.1007/s10561-021-09946-4

    Article  Google Scholar 

  3. Pirnay JP, Verween G, Pascual B et al (2012) Evaluation of a microbiological screening and acceptance procedure for cryopreserved skin allografts based on 14 day cultures. Cell Tissue Bank 13:287–295. https://doi.org/10.1007/s10561-011-9256-2

    Article  PubMed  Google Scholar 

  4. Gaucher S, Khaznadar Z, Gourevitch JC, Jarraya M (2016) Skin donors and human skin allografts: evaluation of an 11-year practice and discard in a referral tissue bank. Cell Tissue Bank 17:11–19. https://doi.org/10.1007/s10561-015-9528-3

    Article  PubMed  Google Scholar 

  5. Obeng MK, McCauley RL, Barnett JR, Heggers JP, Sheridan K, Schutzler SS (2001) Cadaveric allograft discards as a result of positive skin cultures. Burns 27:267–271. https://doi.org/10.1016/S0305-4179(00)00116-9

    Article  CAS  PubMed  Google Scholar 

  6. Pianigiani E, Ierardi F, Cuciti C, Brignali S, Oggioni M, Fimiani M (2010) Processing efficacy in relation to microbial contamination of skin allografts from 723 donors. Burns 36:347–351. https://doi.org/10.1016/j.burns.2009.04.020

    Article  CAS  PubMed  Google Scholar 

  7. Eastlund T (2006) Bacterial infection transmitted by human tissue allograft transplantation. Cell Tissue Bank 7:147–166. https://doi.org/10.1007/s10561-006-0003-z

    Article  PubMed  Google Scholar 

  8. Silva CRM, Borges ML, Watanabe CM, Diogo Filho A, Gontijo Filho PP (2002) Centros cirúrgicos e microflora ambiental nas salas de cirurgia dos hospitais de Uberlância, Minas Gerais. Bioscience J:14

  9. Ghalavand Z, HeidaryRouchi A, Bahraminasab H et al (2018) Molecular testing of Klebsiella pneumoniae contaminating tissue allografts recovered from deceased donors. Cell Tissue Bank 19:391–398. https://doi.org/10.1007/s10561-018-9684-3

    Article  CAS  PubMed  Google Scholar 

  10. Pitt TL, Tidey K, Roy A, Ancliff S, Lomas R, McDonald CP (2014) Activity of four antimicrobial cocktails for tissue allograft decontamination against bacteria and Candida spp. of known susceptibility at different temperatures. Cell Tissue Bank 15:119–125. https://doi.org/10.1007/s10561-013-938391-3982-0

    Article  CAS  PubMed  Google Scholar 

  11. Rooney P, Eagle M, Hogg P, Lomas R, Kearney J (2008) Sterilisation of skin allograft with gamma irradiation. Burns 34:664–673. https://doi.org/10.1016/j.burns.2007.08.021

    Article  CAS  PubMed  Google Scholar 

  12. Meneghetti KL, do Canto Canabarro M, Otton LM, Dos Santos Hain T, Geimba MP, Corção G, (2018) Bacterial contamination of human skin allografts and antimicrobial resistance: a skin bank problem. BMC Microbiol 18:121. https://doi.org/10.1186/s12866-018-1261-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Birk SE, Haagensen JAJ, Johansen HK, Molin S, Nielsen LH, Boisen A (2020) Microcontainer delivery of antibiotic improves treatment of Pseudomonas aeruginosa biofilms. Adv Healthc Mater 9:e1901779. https://doi.org/10.1002/adhm.202070027

    Article  CAS  PubMed  Google Scholar 

  14. del Pozo JL, Patel R (2007) The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 82:204–209. https://doi.org/10.1038/sj.clpt.6100247

    Article  CAS  PubMed  Google Scholar 

  15. Omar A, Wright JB, Schultz G, Burrell R, Nadworny P (2017) Microbial biofilms and chronic wounds. Microorganisms : 5. https://doi.org/10.3390/microorganisms5010009

  16. Welch K, Cai Y, Strømme M (2012) A method for quantitative determination of biofilm viability. J Funct Biomater 3:418–431. https://doi.org/10.3390/jfb3020418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Macià MD, Rojo-Molinero E, Oliver A (2014) Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect 20:981–990. https://doi.org/10.1111/1469-0691.12651

    Article  PubMed  Google Scholar 

  18. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39. https://doi.org/10.1016/S0966-842X(00)01913-2

    Article  CAS  PubMed  Google Scholar 

  19. Marcinkiewicz J, Strus M, Pasich E (2013) Antibiotic resistance: a “dark side” of biofilm-associated chronic infections. Pol Arch Med Wewn 123:309–313

    PubMed  Google Scholar 

  20. Høiby N, Ciofu O, Johansen HK et al (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65. https://doi.org/10.4248/IJOS11026

    Article  PubMed  PubMed Central  Google Scholar 

  21. Olsen I (2015) Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis 34:877–886. https://doi.org/10.1007/s10096-015-2323-z

    Article  CAS  PubMed  Google Scholar 

  22. Venkatesan N, Perumal G, Doble M (2015) Bacterial resistance in biofilm-associated bacteria. Future Microbiol 10:1743–1750. https://doi.org/10.2217/fmb.15.69

    Article  CAS  PubMed  Google Scholar 

  23. Iliescu Nelea M, Paek L, Dao L et al (2019) In-situ characterization of the bacterial biofilm associated with Xeroform TM and Kaltostat TM dressings and evaluation of their effectiveness on thin skin engraftment donor sites in burn patients. Burns 45:1122–1130. https://doi.org/10.1016/j.burns.2019.02.024

    Article  PubMed  Google Scholar 

  24. Russu E, Mureșan A, Grigorescu B (2011) Vascular graft infections management. Manag Health 15:16–19

    Google Scholar 

  25. Trampuz A, Zimmerli W (2006) Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 37:S59-66. https://doi.org/10.1016/j.injury.2006.04.010

    Article  PubMed  Google Scholar 

  26. Peeters A, Putzeys G, Thorrez L (2019) Current insights in the application of bone grafts for local antibiotic delivery in bone reconstruction surgery. J Bone Joint Infect 4:245–253. https://doi.org/10.7150/jbji.38373

    Article  Google Scholar 

  27. Mathur T, Singhal S, Khan S, Upadhyay DJ, Fatma T, Rattan A (2006) Detection of biofilm formation among the clinical isolates of Staphylococci: an evaluation of three different screening methods. Indian J Med Microbiol 24:25–29. https://doi.org/10.1016/S0255-0857(21)02466-X

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki T, Kawamura Y, Uno T, Ohashi Y, Ezaki T (2005) Prevalence of Staphylococcus epidermidis strains with biofilm-forming ability in isolates from conjunctiva and facial skin. Am J Ophthalmol 140:844–850. https://doi.org/10.1016/j.ajo.2005.05.050

    Article  PubMed  Google Scholar 

  29. Clauss M, Tafin UF, Bizzini A, Trampuz A, Ilchmann T (2013) Biofilm formation by staphylococci on fresh, fresh-frozen and processed human and bovine bone grafts. Eur Cell Mater 25:159–166. https://doi.org/10.22203/ecm.v025a11

    Article  CAS  PubMed  Google Scholar 

  30. Cairns LS, Hobley L, Stanley-Wall NR (2014) Biofilm formation by Bacillus subtilis: new insights into regulatory strategies and assembly mechanisms. Mol Microbiol 93:587–598. https://doi.org/10.1111/mmi.12697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tran SL, Guillemet E, Gohar M, Lereclus D, Ramarao N (2010) CwpFM (EntFM) is a Bacillus cereus potential cell wall peptidase implicated in adhesion, biofilm formation, and virulence. J Bacteriol 192:2638–2642. https://doi.org/10.1128/JB.01315-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Meth 40:175–179. https://doi.org/10.1016/S0167-7012(00)00122-6

    Article  CAS  Google Scholar 

  33. CLSI (2017) Performance standards for antimicrobial susceptibility testing. 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute

  34. CLSI (2010) Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. In. Second Edition M45-A2 ed. Wayne, PA: Clinical and Laboratory Standards Institute

  35. Pettit RK, Weber CA, Kean MJ et al (2005) Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrob Agents Chemother 49:2612–2617. https://doi.org/10.1128/AAC.49.7.2612-2617.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Flemming K, Klingenberg C, Cavanagh JP et al (2009) High in vitro antimicrobial activity of synthetic antimicrobial peptidomimetics against staphylococcal biofilms. J Antimicrob Chemother 63:136–145. https://doi.org/10.1093/jac/dkn464

    Article  CAS  PubMed  Google Scholar 

  37. Matioski AR, Pereira da Silva CRGB, Silva-Cunha DR, Calomeno LHA, Bonato FT, Nigro MVA (2015) First-year experience of a new skin bank in Brazil. Plastic and Aesthetic Research 2:6. https://doi.org/10.4103/2347-9264.169496

    Article  Google Scholar 

  38. Bockstael K, Geukens N, Van Mellaert L, Herdewijn P, Anné J, Van Aerschot A (2009) Evaluation of the type I signal peptidase as antibacterial target for biofilm-associated infections of Staphylococcus epidermidis. Microbiology 155:3719–3729. https://doi.org/10.1099/mic.0.031765-0

    Article  CAS  PubMed  Google Scholar 

  39. Ciofu O, Rojo-Molinero E, Macià MD, Oliver A (2017) Antibiotic treatment of biofilm infections. APMIS 125:304–319. https://doi.org/10.1111/apm.12673

    Article  PubMed  Google Scholar 

  40. Pettit RK, Weber CA, Pettit GR (2009) Application of a high throughput Alamar blue biofilm susceptibility assay to Staphylococcus aureus biofilms. Ann Clin Microbiol Antimicrob 8:28. https://doi.org/10.1186/1476-0711-8-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mottola C, Matias CS, Mendes JJ et al (2016) Susceptibility patterns of Staphylococcus aureus biofilms in diabetic foot infections. BMC Microbiol 16:119. https://doi.org/10.1186/s12866-016-0737-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Setlow P (2014) Germination of spores of Bacillus species: what we know and do not know. J Bacteriol 196:1297–1305. https://doi.org/10.1128/JB.01455-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fisher RA, Gollan B, Helaine S (2017) Persistent bacterial infections and persister cells. Nat Rev Microbiol 15:453–464. https://doi.org/10.1038/nrmicro.2017.42

    Article  CAS  PubMed  Google Scholar 

  44. Knobloch JK, Von Osten H, Horstkotte MA, Rohde H, Mack D (2002) Minimal attachment killing (MAK): a versatile method for susceptibility testing of attached biofilm-positive and -negative Staphylococcus epidermidis. Med Microbiol Immunol 191:107–114. https://doi.org/10.1007/s00430-002-0125-2

    Article  CAS  PubMed  Google Scholar 

  45. Labthavikul P, Petersen PJ, Bradford PA (2003) In vitro activity of tigecycline against Staphylococcus epidermidis growing in an adherent-cell biofilm model. Antimicrob Agents Chemother 47:3967–3969. https://doi.org/10.1128/AAC.47.12.3967-3969.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pibalpakdee P (2012) Wongratanacheewin S, Taweechaisupapong S, Niumsup PR. Diffusion and activity of antibiotics against Burkholderiapseudomallei biofilms. Int J Antimicrob Agents 39:356–359. https://doi.org/10.1016/j.ijantimicag.2011.12.010

    Article  CAS  PubMed  Google Scholar 

  47. Sawasdidoln C, Taweechaisupapong S, Sermswan RW, Tattawasart U, Tungpradabkul S, Wongratanacheewin S (2010) Growing Burkholderiapseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance. PLoS ONE 5:e9196. https://doi.org/10.1371/journal.pone.0009196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Toté K, Berghe DV, Deschacht M, de Wit K, Maes L, Cos P (2009) Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Int J Antimicrob Agents 33:525–531. https://doi.org/10.1016/j.ijantimicag.2008.11.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Aline Francielle Damo Souza and Luana Pretto from the skin bank of Dr. Roberto Corrêa Chem from the Hospital Complex Santa Casa de Misericórdia de Porto Alegre for preparing the skin allografts samples for this study.

Funding

This study was financed in part by the Coordination of Superior Level Staff Improvement–Brazil (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and design: Karine Lena Meneghetti, Mercedes Passos Geimba, Gertrudes Corção. Methodology: Micaela do Canto Canabarro, Karine Lena Meneghetti. Formal analysis and investigation: Micaela do Canto Canabarro, Karine Lena Meneghetti. Writing—original draft preparation: Micaela do Canto Canabarro. Writing—review and editing: Karine Lena Meneghetti, Mercedes Passos Geimba, Gertrudes Corção. Supervision: Mercedes Passos Geimba, Gertrudes Corção. Funding acquisition: Gertrudes Corção. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gertrudes Corção.

Ethics declarations

Ethics approval and consent to participate

This study was approved by the Research Ethics Committees of Universidade Federal do Rio Grande do Sul (protocol CAAE 36949514.8.0000.5347) and of Irmandade da Santa Casa de Misericórdia de Porto Alegre (protocol CAAE 45100215.1.0000.5335).

Consent for publication

All authors agree to publish this study and to publish its results.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Jorge Luiz Mello Sampaio

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Canto Canabarro, M., Meneghetti, K.L., Geimba, M.P. et al. Biofilm formation and antibiotic susceptibility of Staphylococcus and Bacillus species isolated from human allogeneic skin. Braz J Microbiol 53, 153–160 (2022). https://doi.org/10.1007/s42770-021-00642-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00642-9

Keywords

Navigation