Skip to main content
Log in

Bioactive antifungal metabolites produced by Streptomyces amritsarensis V31 help to control diverse phytopathogenic fungi

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Actinomycetes due to their unique repertoire of antimicrobial secondary metabolites can be an eco-friendly and sustainable alternative to agrochemicals to control plant pathogens. In the present study, antifungal activity of twenty different actinomycetes was evaluated via dual culture plate assay against six different phytopathogens, viz., Alternaria alternata, Aspergillus flavus, Fusarium oxysporum f. sp. lycopersici, Sarocladium oryzae, Sclerotinia sclerotiorum, and Rhizoctonia solani. Two potential isolates, Streptomyces amritsarensis V31 and Kribella karoonensis MSCA185 showing high antifungal activity against all six fungal pathogens, were further evaluated after extraction of bioactive metabolites in different solvents. Metabolite extracted from S. amritsarensis V31 in different solvents inhibited Rhizoctonia solani (7.5–65%), Alternaria alternata (5.5–52.7%), Aspergillus flavus (8–30.7%), Fusarium oxysporum f. sp. lycopersici (25–44%), Sarocladium oryzae (11–55.5%), and Sclerotinia sclerotiorum (29.7–40.5%); 1000 D diluted methanolic extract of S. amritsarensis V31 showed growth inhibition against R. solani (23.3%), A. flavus (7.7%), F. oxysporum (22.2%), S. oryzae (16.7%), and S. sclerotiorum (19.0%). Metabolite extracts of S. amritsarensis V31 significantly reduced the incidence of rice sheath blight both as preventive and curative sprays. Chemical profiling of the metabolites in DMSO extract of S. amritsarensis V31 revealed 6-amino-5-nitrosopyrimidine-2,4-diol as the predominant compound present. It was evident from the LC–MS analyses that S. amritsarensis V31 produced a mixture of potential antifungal compounds which inhibited the growth of different phytopathogenic fungi. The results of this study indicated that metabolite extracts of S. amritsarensis V31 can be exploited as a bio-fungicide to control phytopathogenic fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194. https://doi.org/10.1038/nature10947

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Solache MA, Casadevall A (2010) Global warming will bring new fungal diseases for mammals. mBio 1(1):e00061-10. https://doi.org/10.1128/mBio.00061-10

    Article  PubMed  PubMed Central  Google Scholar 

  3. Scarpino V, Reyneri A, Sulyok M, Krska R, Blandino M (2015) Effect of fungicide application to control Fusarium head blight and 20 Fusarium and Alternaria mycotoxins in winter wheat (Triticum aestivum L.). World Mycotoxin J 8(4):499–510. https://doi.org/10.3920/WMJ2014.1814

    Article  CAS  Google Scholar 

  4. Talabi AO, Kayode TJ (2019) Groundwater pollution and remediation. J Water Resour Prot 11(1):1–9. https://doi.org/10.4236/jwarp.2019.111001

    Article  CAS  Google Scholar 

  5. Elahi E, Weijun C, Zhang H, Nazeer M (2019) Agricultural intensification and damages to human health in relation to agrochemicals: application of artificial intelligence. Land Use Pol 83:461–474. https://doi.org/10.1016/j.landusepol.2019.02.023

    Article  Google Scholar 

  6. Mohite OS, Weber T, Kim HU, Lee SY (2019) Genome scale metabolic reconstruction of actinomycetes for antibiotics production. Biotechnol J 14(1):1800377. https://doi.org/10.1002/biot.201800377

    Article  CAS  Google Scholar 

  7. Savi DC, Shaaban KA, Gos FM, Thorson JS, Glienke C, Rohr J (2019) Secondary metabolites produced by Microbacterium sp. LGMB471 with antifungal activity against the phytopathogen Phyllosticta citricarpa. Folia Microbiol 64(3):453–60. https://doi.org/10.1007/s12223-018-00668-x

    Article  CAS  Google Scholar 

  8. Kumar M, Kumar P, Das P, Kapur MK (2019) Draft genome of Streptomyces sp. strain 130 and functional analysis of extracellular enzyme producing genes. Mol Biol Rep 46(5):5063–5071. https://doi.org/10.1007/s11033-019-04960-y

    Article  CAS  PubMed  Google Scholar 

  9. Verma VC, Singh SK, Prakash S (2011) Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss J Basic Microbiol 51(5):550–556. https://doi.org/10.1002/jobm.201000155

    Article  CAS  PubMed  Google Scholar 

  10. Anwar S, Ali B, Sajid I (2016) Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Front Microbiol 7:1334. https://doi.org/10.3389/fmicb.2016.01334

    Article  PubMed  PubMed Central  Google Scholar 

  11. Palakawong NAS, Pristaš P, Hrehová L, Javorský P, Stams AJ, Plugge CM (2016) Actinomyces succiniciruminis sp. nov. and Actinomyces glycerinitolerans sp. nov., two novel organic acid-producing bacteria isolated from rumen. Syst Appl Microbiol 39(2):445–452. https://doi.org/10.1016/j.syapm.2016.08.001

    Article  CAS  Google Scholar 

  12. Palla MS, Guntuku GS, Muthyala MKK, Pingali S, Sahu PK (2018) Isolation and molecular characterization of antifungal metabolite producing actinomycete from mangrove soil. Beni-Suef Univ J Basic Appl Sci 7(2):250–256. https://doi.org/10.1016/j.bjbas.2018.02.006

    Article  Google Scholar 

  13. Shi L, Nwet TT, Ge B, Zhao W, Liu B, Cui H, Zhang K (2018) Antifungal and plant growth-promoting activities of Streptomyces roseoflavus strain NKZ-259. Biol Cont 125:57–64. https://doi.org/10.1016/j.biocontrol.2018.06.012

    Article  CAS  Google Scholar 

  14. Jakubiec-Krzesniak K, Rajnisz-Mateusiak A, Guspiel A, Ziemska J, Solecka J (2018) Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Pol J Microbiol 67(3):259–272. https://doi.org/10.21307/pjm-2018-048

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ahmad MS, El-Gendy AO, Ahmed RR, Hassan HM, El-Kabbany HM, Merdash AG (2017) Exploring the antimicrobial and antitumor potentials of Streptomyces sp. AGM12–1 isolated from Egyptian soil. Front Microbiol 8:438. https://doi.org/10.3389/fmicb.2017.00438

    Article  PubMed  PubMed Central  Google Scholar 

  16. Han L, Zhang G, Miao G, Zhang X, Feng J (2015) Streptomyces kanasensis sp. nov., an antiviral glycoprotein producing actinomycete isolated from forest soil around Kanas lake of China. Curr Microbiol 71(6):627–631. https://doi.org/10.1007/s00284-015-0900-0

    Article  CAS  PubMed  Google Scholar 

  17. Ruanpanun P, Laatsch H, Tangchitsomkid N, Lumyong S (2011) Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J Microbiol Biotechnol 27(6):1373–80. https://doi.org/10.1007/s11274-010-0588-z

    Article  CAS  PubMed  Google Scholar 

  18. Qi D, Zou L, Zhou D, Chen Y, Gao Z, Feng R, Zhang M, Li K, Xie J, Wang W (2019) Taxonomy and broad-spectrum antifungal activity of Streptomyces sp. SCA3–4 isolated from rhizosphere soil of Opuntia stricta. Front Microbiol 10:1390. https://doi.org/10.3389/fmicb.2019.01390

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhao S, Liu C, Zheng W, Ma Z, Cao T, Zhao J, Yan K, Xiang W, Wang X (2017) Micromonospora parathelypteridis sp. nov., an endophytic actinomycete with antifungal activity isolated from the root of Parathelypteris beddomei (Bak.) Ching. Int J Syst Evol Microbiol 67(2):268–274. https://doi.org/10.1099/ijsem.0.001614

    Article  CAS  PubMed  Google Scholar 

  20. Orozco-Mosqueda CM, Valencia-Cantero E, Lopez-Albarran P, Martinez-Pacheco M, Velazquez-Becerra C (2015) Bacterium Arthrobacter agilis UMCV2 and diverse amines inhibit in vitro growth of wood-decay fungi. Rev Argent Microbiol 47(3):219–228. https://doi.org/10.1016/j.ram.2015.06.005

    Article  Google Scholar 

  21. Keel C, Weller DM, Natsch A, Defago G, Cook RJ, Thomashow LS (1996) Conservation of the 2,4-diacetylphloroglucinol biosynthesis locus among fluorescent Pseudomonas strains from diverse geographic locations. Appl Environ Microbiol 62(2):552–563. https://doi.org/10.1128/AEM.62.2.552-563.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mahdizadeh V, Safaie N, Khelghatibana F (2015) Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. J Crop Prot 4(3):291–300

    Google Scholar 

  23. Liu CX, Zhang J, Wang XJ, Qian PT, Wang JD, Gao YM, Yan YJ, Zhang SZ, Xu PF, Li WB, Xiang WS (2012) Antifungal activity of borrelidin produced by a Streptomyces strain isolated from soybean. J Agric Food Chem 60(5):1251–1257. https://doi.org/10.1021/jf2044982

    Article  CAS  PubMed  Google Scholar 

  24. Tepe B, Daferera D, Sokmen A, Sokmen M, Polissiou M (2005) Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem 90(3):333–340. https://doi.org/10.1016/j.foodchem.2003.09.013

    Article  CAS  Google Scholar 

  25. Sharma NR, Teng PS, Oliver FM (1990) Comparisons of assessment methods for rice sheath blight disease. Philipp Phytopathol 26(12):20–24

    Google Scholar 

  26. Almeida F, Rodrigues ML, Coelho C (2019) The still underestimated problem of fungal diseases worldwide. Front Microbiol 10:214. https://doi.org/10.3389/fmicb.2019.00214

    Article  PubMed  PubMed Central  Google Scholar 

  27. Derbyshire MC, Denton-Giles M (2016) The control of Sclerotinia stem rot on oilseed rape (Brassica napus): current practices and future opportunities. Plant Pathol 65(6):859–877. https://doi.org/10.1111/ppa.12517

    Article  CAS  Google Scholar 

  28. Moni ZR, Ali MA, Alam MS, Rahman MA, Bhuiyan MR, Mian MS, Iftekharuddaula MK, Latif MA, Khan MAI (2016) Morphological and genetical variability among Rhizoctonia solani isolates causing sheath blight disease of rice. Rice Sci 23(1):42–50. https://doi.org/10.1016/j.rsci.2016.01.005

    Article  Google Scholar 

  29. Guimarães RA, Lobo VL, Côrtes MV, Filippi MC, Prabhu AS (2017) Characterization of Sarocladium oryzae and its reduction potential of rice leaf blast. Pesqui Agropecu Trop 47(1):41–52. https://doi.org/10.1590/1983-40632016v4742738

    Article  Google Scholar 

  30. Ramírez-Cariño HF, Guadarrama-Mendoza PC, Sánchez-López V, Cuervo-Parra JA, Ramírez-Reyes T, Dunlap CA, Valadez-Blanco R (2020) Biocontrol of Alternaria alternata and Fusarium oxysporum by Trichoderma asperelloides and Bacillus paralicheniformis in tomato plants. Antonie Van Leeuwenhoek 113(9):1247–1261. https://doi.org/10.1007/s10482-020-01433-2

    Article  CAS  PubMed  Google Scholar 

  31. Baibakova EV, Nefedjeva EE, Suska-Malawska M, Wilk M, Sevriukova GA, Zheltobriukhov VF (2019) Modern fungicides: mechanisms of action, fungal resistance and phytotoxic effects. Annu Res Rev Biol 32(3):1–16. https://doi.org/10.9734/arrb/2019/v32i330083

    Article  CAS  Google Scholar 

  32. Rani L, Thapa K, Kanojia N, Sharma N, Singh S, Grewal AS, Srivastav AL, Kaushal J (2020) An extensive review on the consequences of chemical pesticides on human health and environment. J Cleaner Prod 283:124657. https://doi.org/10.1016/j.jclepro.2020.124657

    Article  CAS  Google Scholar 

  33. Ding T, Yang LJ, Zhang WD, Shen YH (2019) The secondary metabolites of rare actinomycetes: chemistry and bioactivity. RSC Adv 9(38):21964–21988. https://doi.org/10.1039/C9RA03579F

    Article  CAS  Google Scholar 

  34. Zhang D, Lu Y, Chen H, Wu C, Zhang H, Chen L, Chen X (2020) Antifungal peptides produced by actinomycetes and their biological activities against plant diseases. J Antibiot 73(5):265–282. https://doi.org/10.1038/s41429-020-0287-4

    Article  CAS  Google Scholar 

  35. Weber T, Charusanti P, Musiol-Kroll EM, Jiang X, Tong Y, Kim HU, Lee SY (2015) Metabolic engineering of antibiotic factories: new tools for antibiotic production in actinomycetes. Trends Biotechnol 33(1):15–26. https://doi.org/10.1016/j.tibtech.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  36. Tian SZ, Pu X, Luo G, Zhao LX, Xu LH, Li WJ, Luo Y (2013) Isolation and characterization of new p-terphenyls with antifungal, antibacterial, and antioxidant activities from halophilic actinomycete Nocardiopsis gilva YIM 90087. J Agric Food Chem 61(12):3006–3012. https://doi.org/10.1021/jf400718w

    Article  CAS  PubMed  Google Scholar 

  37. Sinha K, Hegde R, Kush A (2014) Exploration on native actinomycetes strains and their potential against fungal plant pathogens. Int J Curr Microbiol App Sci 3(11):37–45

    Google Scholar 

  38. Fang X, Shen J, Wang J, Chen ZL, Chen ZY, Liu LY, Zeng HX, Jin XB (2018) Antifungal activity of 3-acetylbenzamide produced by actinomycete WA23-4-4 from the intestinal tract of Periplaneta americana. J Microbiol 56:516–523. https://doi.org/10.1007/s12275-018-7510-z

    Article  CAS  PubMed  Google Scholar 

  39. Baz M, Lahbabi D, Samri S, Val F, Hamelin G, Madore I, Bouarab K, Beaulieu C, Ennaji MM, Barakate M (2012) Control of potato soft rot caused by Pectobacterium carotovorum and Pectobacterium atrosepticum by Moroccan actinobacteria isolates. World J Microbiol Biotechnol 28:303–311. https://doi.org/10.1007/s11274-011-0820-5

    Article  CAS  PubMed  Google Scholar 

  40. Do E, Lee HG, Park M, Cho YJ, Kim DH, Park SH, Eun D, Park T, An S, Jung WH (2019) Antifungal mechanism of action of lauryl betaine against skin-associated fungus Malassezia restricta. Mycobiol 47(2):242–249. https://doi.org/10.1080/12298093.2019.1625175

    Article  Google Scholar 

  41. Ivanova V, Lyutskanova D, Kolarova M, Aleksieva K, Raykovska V, Stoilova-Disheva M (2010) Structural elucidation of a bioactive metabolites produced by Streptomyces avidinii SB9 strain, isolated from permafrost soil in Spitsbergen. Arctic Biotechnol Biotechnol Equip 24(4):2092–2095. https://doi.org/10.2478/V10133-010-0080-9

    Article  CAS  Google Scholar 

  42. Abd El-Wahab AHF (2012) Synthesis, reactions and evaluation of the antimicrobial activity of some 4-(p-Halophenyl)-4H-naphthopyran, pyranopyrimidine and pyranotriazolopyrimidine derivatives. Pharm 5(7):745–757. https://doi.org/10.3390/ph5070745

    Article  CAS  Google Scholar 

  43. Olivella M, Marchal A, Nogueras M, Melguizo M, Lima B et al (2015) New series of antibacterial nitrosopyrimidines: synthesis and structure–activity relationship. Arch Pharm 348(1):68–80. https://doi.org/10.1002/ardp.201400271

    Article  CAS  Google Scholar 

  44. de Rodríguez DJ, Gaytán-Sánchez NA, Rodríguez-García R, Hernández-Castillo FD, Díaz-Jiménez L et al (2019) Antifungal activity of Juglans spp. and Carya sp. ethanol extracts against Fusarium oxysporum on tomato under greenhouse conditions. Ind Crops Prod 138:111442. https://doi.org/10.1016/j.indcrop.2019.06.005

    Article  CAS  Google Scholar 

  45. Kibret M, Guerrero-Garzón JF, Urban E, Zehl M, Wronski VK et al (2018) Streptomyces spp. from Ethiopia producing antimicrobial compounds: characterization via bioassays, genome analyses, and mass spectrometry. Front Microbiol 9:1270. https://doi.org/10.3389/fmicb.2018.01270

    Article  PubMed  PubMed Central  Google Scholar 

  46. Polak A, Jäckel A, Noack A, Kappe R (2004) Agar sublimation test for the in vitro determination of the antifungal activity of morpholine derivatives. Mycoses 47:184–192. https://doi.org/10.1111/j.1439-0507.2004.00975.x

    Article  CAS  PubMed  Google Scholar 

  47. Titi A, Messali M, Alqurashy BA, Touzani R, Shiga T, Oshio H, Fettouhi M, Rajabi M, Almalki FA, Hadda TB (2020) Synthesis, characterization, X-ray crystal study and bioactivities of pyrazole derivatives: identification of antitumor, antifungal and antibacterial pharmacophore sites. J Mol Struct 1205:127625. https://doi.org/10.1016/j.molstruc.2019.127625

    Article  CAS  Google Scholar 

  48. Zaki RM, Abdul-Malik MA, Saber SH, Radwan SM, El-Dean AMK (2020) A convenient synthesis, reactions and biological evaluation of novel pyrazolo[3,4-b]selenolo[3,2-e]pyrazine heterocycles as potential anticancer and antimicrobial agents. Med Chem Res 29(12):2130–2145. https://doi.org/10.1007/s00044-020-02635-z

    Article  CAS  Google Scholar 

  49. Baldaniya BB, Patel PK (2009) Synthesis, antibacterial and antifungal activities of s-triazine derivatives. J Chem 6(3):673–680. https://doi.org/10.1155/2009/196309

    Article  CAS  Google Scholar 

  50. Bhat M, Belagali SL (2020) Structural activity relationship and importance of benzothiazole derivatives in medicinal chemistry: a comprehensive review. Mini-Rev Org Chem 17(3):323–350. https://doi.org/10.2174/1570193X16666190204111502

    Article  CAS  Google Scholar 

  51. Kim YJ, Kim JH, Rho JY (2019) Antifungal activities of Streptomyces blastmyceticus strain 12–6 against plant pathogenic fungi. Mycobiology 47(3):329–334. https://doi.org/10.1080/12298093.2019.1635425

    Article  PubMed  PubMed Central  Google Scholar 

  52. Suryavanshi HR (2017) Synthesis and biological activities of piperazine derivatives as antimicrobial and antifungal agents. Org Commun 10(3):228. https://doi.org/10.25135/acg.oc.23.17.05.026

    Article  CAS  Google Scholar 

  53. Hussain S, Ali S, Shahzadi S, Sharma SK, Qanungo K, Shahid M. Synthesis, characterization, semiempirical and biological activities of organotin (IV) carboxylates with 4-piperidinecarboxylic acid (2014) Bioinorg Chem Appl 959203. https://doi.org/10.1155/2014/959203

  54. Li CS, Li XM, Gao SS, Lu YH, Wang BG (2013) Cytotoxic anthranilic acid derivatives from deep sea sediment-derived fungus Penicillium paneum SD-44. Mar Drug 11(8):3068–3076. https://doi.org/10.3390/md11083068

    Article  CAS  Google Scholar 

  55. Amirkhanov NV, Tikunova NV, Pyshnyi DV (2018) Synthetic antimicrobial peptides: I. antimicrobial activity of amphiphilic and nonamphiphilic cationic peptides Rus. J Bioorganic Chem 44(5):492–503. https://doi.org/10.1134/S1068162018050035

    Article  CAS  Google Scholar 

  56. Kondoh O, Inagaki Y, Fukuda H, Mizuguchi E, Ohya Y, Arisawa M, Shimma N, Aoki Y, Sakaitani M, Watanabe T (2005) Piperazine propanol derivative as a novel antifungal targeting 1, 3-β-D-glucan synthase. Biol Pharm Bull 28(11):2138–2141. https://doi.org/10.1248/bpb.28.2138

    Article  CAS  PubMed  Google Scholar 

  57. Carvalho A, Chu J, Meinguet C, Kiss R, Vandenbussche G, Masereel B, Wouters J, Kornienko A, Pelletier J, Mathieu V (2017) A harmine-derived beta-carboline displays anti-cancer effects in vitro by targeting protein synthesis. Eur J Pharmaco 805:25–35. https://doi.org/10.1016/j.ejphar.2017.03.034

    Article  CAS  Google Scholar 

  58. Khabnadideh S, Rezaei Z, Pakshir K, Zomorodian K, Ghafari N (2012) Synthesis and antifungal activity of benzimidazole, benzotriazole and aminothiazole derivatives. Res Pharm Sci 7(2):65

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chohan ZH (2008) Metal-based sulfonamides: their preparation, characterization and in-vitro antibacterial, antifungal & cytotoxic properties. X-ray structure of 4-[(2-hydroxybenzylidene) amino] benzenesulfonamide (2008). J Enzyme Inhib Med Chem 23(1):120–30

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Director, ICAR-NBAIM, India, for financial and infrastructural support.

Funding

This work is a part of Indian Soil Microbiome project being implemented at ICAR-NBAIM, India.

Author information

Authors and Affiliations

Authors

Contributions

HC conceptualized the study. MS, BNS, SKG, SV, PC, and SD carried out experiments and generated the data. MS, BNS, and HC prepared the manuscript draft. HC, SV, and KM revised the draft. AKS and HC edited and finalized the manuscript.

Corresponding author

Correspondence to Hillol Chakdar.

Ethics declarations

Ethical approval

The manuscript does not contain experiments involving animal or human studies.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

42770_2021_625_MOESM1_ESM.jpg

Supplementary file1 (JPG 554 KB) Supplementary Fig. 1. Antifungal activity of extracts of S. amritsarensis V31 in different solvents (ME, HE, DE, EE and CE) during well diffusion assay against fungal pathogens Alternaria alternata and Fusarium oxysporum. Here, ME=Methanolic extract, HE=Hexane extract, DE=DMSO (dimethylsulfoxide) extract, EE=Ethyl acetate extract and CE=Crude and different solvent without extract used as a control was denoted by M=Methanol, H=Hexane, D=DMSO, E=Ethyl acetate and C=Nutrient broth.

42770_2021_625_MOESM2_ESM.jpg

Supplementary file2 (JPG 841 KB) Supplementary Fig. 2. The figure represents the response of metabolite extracted from S. amritsarensis V31 on development of sheath blight disease caused by R. solani isolate PU RS1 in rice plants. R. solani isolate PU RS1 grown on PDA plate (a), rice plants grown at field (b), inoculation of sclerotia of R. solani isolate PU RS1 between leaves bases (c), moistening infected area with sterile distilled water (d) and covering of inoculated area with aseptic wet cotton (e), symptoms of sheath blight disease of rice caused by R. solani isolate PU RS1 was appeared at the infection site (in white circle) (f); and no symptom was appeared in metabolite extract sprayed before sclerotia inoculation on the rice leaves (g).

Supplementary file3 (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid, M., Singh, B.N., Verma, S. et al. Bioactive antifungal metabolites produced by Streptomyces amritsarensis V31 help to control diverse phytopathogenic fungi. Braz J Microbiol 52, 1687–1699 (2021). https://doi.org/10.1007/s42770-021-00625-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00625-w

Keywords

Navigation