Skip to main content

Enzyme activities in a sandy soil of Western Bahia under cotton production systems: short-term effects, temporal variability, and the FERTBIO sample concept

Abstract

Enzyme activities (EAs) and the FERTBIO sample concept have been increasingly adopted as a novel approach to estimate the soil quality in Brazil. However, the performance of this strategy in sandy soils of the Cerrado biome remains unclear. During 2 years, in a Cerrado’s sandy soil, the short-term effects of ten different cropping systems (conventional tillage or no-tillage associated with monoculture, rotations, and/or successions) on the activities of β-glucosidase, acid phosphatase, and arylsulfatase were studied. Issues related to annual variability and the feasibility of using the FERTBIO sample concept for soil enzymes activities were also evaluated. Soil samples were collected at three different depths (0–10 cm, 10–20 cm, and 20–40 cm) in March 2017 and February 2018. Five years since the beginning of the experiment, the presence of cover crops and no-till promoted improvements in EAs evidencing the importance of regenerative management practices for the sustainability of agroecosystems in sandy soils. Regardless of the cropping systems and depths evaluated, soil organic carbon and EAs showed low temporal variation during the 2 years of monitoring. Our results also showed that it is possible to use the FERTBIO sample concept for the Quartzipsament soils of Western Bahia, Brazil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    CONAB (Companhia Nacional de Abastecimento) (2021) Acompanhamento da safra brasileira de grãos. v.8 - Safra 2020/21, n. 4. Quarto levantamento. https://www.conab.gov.br/component/k2/item/download/35393_68b4b3da2c5c1f4d4fe9a39f57343edf. Accessed 27 Jan 2021

  2. 2.

    AIBA (Associação de Agricultores e Irrigantes da Bahia) (2019) Anuário da safra do Oeste Baiano. Safra 2018/19. https://aiba.org.br/anuario/. Accessed 11 Jan 2020

  3. 3.

    Freitas PL, Polidoro JC, Santos HG, Prado RB, Calderano SB, Gregoris G, Manzatto CV, Dowich I, Bernard ACC (2014) Identificação e caracterização físico-química de Latossolo de Textura arenosa e média da região Oeste da Bahia. Cad de Geociências 11, 83–93. https://portalseer.ufba.br/index.php/cadgeoc/article/view/11795. Accessed 21 Jan 2021 

  4. 4.

    Donagemma GK, Freitas PL, Balieiro FC, Fontana A, Spera ST, Lumbreras JF, Viana JHM, Araújo Filho JC, Santos FC, Albuquerque MR, Macedo MCM, Teixeira PC, Amaral AJ, Bortolon E, Bortolon L (2016) Caracterização, potencial agrícola e perspectivas de manejo de solos leves no Brasil. Pesq Agropec Bras 51:1003–1020. https://doi.org/10.1590/s0100-204x2016000900001

    Article  Google Scholar 

  5. 5.

    Mingoti R, Spadotto CA, Moraes DAC (2016) Suscetibilidade à contaminação da água subterrânea em função de propriedades dos solos no Cerrado brasileiro. Pesq Agropec Bras 51:1252–1260. https://doi.org/10.1590/s0100-204x2016000900025

    Article  Google Scholar 

  6. 6.

    Almeida RS, Latuf MO, Santos PS (2016( Análise do desmatamento na bacia do rio de ondas no período de 1984 a 2014, Oeste da Bahia. Cad Prudentino de Geografia 38, 41–63. http://revista.fct.unesp.br/index.php/cpg/article/view/4495. Accessed 28 Jan 2021

  7. 7.

    Corbeels M, Marchão RL, Neto MS, Ferreira EG, Beata EM, Scopel E, Brito OR (2016) Evidence of limited carbon sequestration in soils under no-tillage systems in the Cerrado of Brazil. Sci Rep 6:21450. https://doi.org/10.1038/srep21450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. 8.

    Gomes LC, Faria RM, Souza E, Veloso GV, Schaefer CEGR, Fernandes Filho EI (2019) Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 340:337–350. https://doi.org/10.1016/j.geoderma.2019.01.007

    Article  CAS  Google Scholar 

  9. 9.

    Ferreira AO, Sá JCM, Lal R, Amado TJC, Inagaki TM, Tivet F (2020) Can no-till restore soil organic carbon to levels under natural vegetation in a subtropical and tropical Typic Quartzipisamment? Land Degrad Develop. https://doi.org/10.1002/ldr.3822

  10. 10.

    Mendes IC, Souza LM, Lacerda MPC, Sousa DMG, Lopes AAC (2019) Critical limits for microbial indicators in tropical Oxisols at post-harvest: The FERTBIO soil sample concept. Appl Soil Ecol. https://doi.org/10.1016/j.apsoil.2019.02.025

    Article  Google Scholar 

  11. 11.

    AIBA (Associação de Agricultores e Irrigantes da Bahia) (2017) Agricultura eficiente: uma realidade no oeste baiano. https://aiba.org.br/informaiba/. Accessed 11 Jan 2020

  12. 12.

    Tabatabai MA (1994) Soil enzymes. In: Weaver RW (ed) Methods of soil analysis. Part 2. Microbiological and biochemical properties. SSSA Book Ser. 5 SSSA, pp 778–833. https://doi.org/10.2136/sssabookser5.2.c37

  13. 13.

    Bastida F, Zsolnay A, Hernández T, García C (2008) Past, present and future of soil quality indices: a biological perspective. Geoderma 147:159–171. https://doi.org/10.1016/j.geoderma.2008.08.007

    Article  CAS  Google Scholar 

  14. 14.

    Moghiminian N, Hosseini SM, Kooch Y, Darki BZ (2017) Impacts of changes in land use/cover on soil microbial and enzyme activities. CATENA 157:407–414. https://doi.org/10.1016/j.catena.2017.06.003

    Article  CAS  Google Scholar 

  15. 15.

    Mendes IC, Sousa DMG, Reis Junior FB, Lopes AAC, Souza LM (2019b) Bioanálise de solo: Aspectos teóricos e práticos. In: Severiano EC, Morais MF, Paula AM (eds) Tópicos em Ciência do Solo. Sociedade Brasileira de Ciência do Solo, Viçosa, pp 399–462. https://docplayer.com.br/191915208-Bioanalise-de-solo-aspectos-teoricos-e-praticos.html. Accessed 20 Dec 2020

  16. 16.

    Holloway JD, Stork NE (1991) The dimension of biodiversity: the use of invertebrates as indicators of human impact. In: Hawksworth DL (ed) The biodiversity of microorganisms and invertebrates: its role in sustainable agriculture. CAB International, Wallington, pp 37–63

    Google Scholar 

  17. 17.

    Mendes IC, Sousa DMG, Dantas OD, Lopes AAC, Reis Junior FB, Oliveira MIL, Chaer GM (2021) Soil quality and grain yield: a win-win combination in clayey tropical Oxisols. Geoderma. https://doi.org/10.1016/j.geoderma.2020.114880

    Article  Google Scholar 

  18. 18.

    Lopes AAC, Sousa DMG, Chaer GM, Reis Junior FB, Goedert WJ, Mendes IC (2013) Interpretation of microbial soil indicators as a function of crop yield and organic carbon. Soil Sci Soc Am J 77:461–472. https://doi.org/10.2136/sssaj2012.0191

    Article  CAS  Google Scholar 

  19. 19.

    Lopes AAC, Sousa DMG, Reis Junior FB, Figueiredo CC, Malaquias JV, Souza LM, Mendes IC (2018) Temporal variation and critical limits of microbial indicators in Oxisols in the Cerrado, Brazil. Geoderma Reg 12:72–82. https://doi.org/10.1016/j.geodrs.2018.01.003

    Article  Google Scholar 

  20. 20.

    Raiesi F, Kabiri V (2016) Identification of soil quality indicators for assessing the effect of different tillage practices through a soil quality index in a semi-arid environment. Ecol Indic 71:198–207. https://doi.org/10.1016/j.ecolind.2016.06.061

    Article  CAS  Google Scholar 

  21. 21.

    Embrapa (2018) Sistema Brasileiro de classificação de Solos [Brazilian System of Soil Classification], 5rd ed. Embrapa, Brasília. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1094003/sistema-brasileiro-de-classificacao-de-solos. Acessed 11 Jan 2020

  22. 22.

    Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2014) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  23. 23.

    CLIMATE-DATA.ORG (2019) Dados climáticos para cidades municipais. Disponível em: http://pt.climate-data.org/location/880124/. Accessed 30 Sept 2018

  24. 24.

    Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed), Methods of soil analysis. Part 3. Chemical methods. SSSA Book Ser. Vol. 5. SSSA, Madison, pp 961–1010

  25. 25.

    Jackson ML (1958) Soil chemical analysis. Prentice Hall, Englewood Cliffs

    Google Scholar 

  26. 26.

    Embrapa (Empresa Brasileira de Pesquisa Agropecuária) (2017) Manual and methods of soil analysis, 3nd ed. (in Portuguese), Centro Nacional de Pesquisa de Solos, Rio de Janeiro. https://www.embrapa.br/busca-de-ublicacoes/-/publicacao/1085209/manual-de-metodos-de-analise-de-solo. Accessed 11 Jan 2020

  27. 27.

    Fierer N, Grandy AS, Six J, Paul EA (2009) Searching for unifying principles in soil ecology. Soil Biol Biochem 41:2249–2256. https://doi.org/10.1016/j.soilbio.2009.06.009

    Article  CAS  Google Scholar 

  28. 28.

    Kiem R, Kögel-Knabner I (2003) Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biol Biochem 35:101–118. https://doi.org/10.1016/S0038-0717(02)00242-0

    Article  CAS  Google Scholar 

  29. 29.

    Magdoff F, Weil RR (2004( Soil organic matter in sustainable agriculture. CRC Press, Boca Raton. https://books.google.com.br/books?hl=pt-R&lr=&id=djZpKk4k8HoC&oi=fnd&pg=PP1&dq=Soil+Organic+Matter+in+Sustainable+Agriculture&ots=dIgpIv32Po&sig=KwStyMSFSZyiUT5RdqvFM4D6ASo#v=onepage&q=Soil%20Organic%20Matter%20in%20Sustainable%20Agriculture&f=false. Accessed 20 Jan 2021

  30. 30.

    Poirier N, Sohi SP, Gaunh JL, Mahieu N, Randall EW, Powlson DS, Evershed RP (2005) The chemical composition of measurable soil organic matter pools. Org Geochem 36:1174–1189. https://doi.org/10.1016/j.orggeochem.2005.03.005

    Article  CAS  Google Scholar 

  31. 31.

    Acosta-Martínez V, Mikha M, Vigil MF (2007) Microbial communities and enzyme activities in soils under alternative crop rotations compared to wheat–fallow for the Central Great Plains. Appl Soil Ecol 37:41–52. https://doi.org/10.1016/j.apsoil.2007.03.009

    Article  Google Scholar 

  32. 32.

    Acosta-Martínez V, Rowland D, Sorensen RB, Yeater KM (2008) Microbial community structure and functionality under peanut-based cropping systems in a sandy soil. Biol Fertil Soils 44:681–692. https://doi.org/10.1007/s00374-007-0251-5

    Article  Google Scholar 

  33. 33.

    Pancholy SK, Rice EL (1972) Effect of storage conditions on activities of urease, invertase, amylase, and dehydrogenase in soil. Soil Sci Soc Am Proc 36:536–537. https://doi.org/10.2136/sssaj1972.03615995003600030046x

    Article  CAS  Google Scholar 

  34. 34.

    Speir TW, Ross DJ (1981) A comparison of the effects of air-drying and acetone dehydration on soil enzyme activities. Soil Biol Biochem 13:225–229. https://doi.org/10.1016/0038-0717(81)90025-0

    Article  CAS  Google Scholar 

  35. 35.

    Bandick AK, Dick RP (1999) Field management effects on soil enzyme activities. Soil Biol Biochem 31:1471–1479. https://doi.org/10.1016/S0038-0717(99)51-6

    Article  CAS  Google Scholar 

  36. 36.

    Lee YB, Lorenz N, Dick LK, Dick RP (2007) Cold storage and pretreatment incubation effects on soil microbial properties. Soil Sci Soc Am J 71:1299–1305. https://doi.org/10.2136/sssaj2006.0245

    Article  CAS  Google Scholar 

  37. 37.

    Wallenius K, Rita H, Simpanen S, Mikkonen A, Niemi RM (2010) Sample storage for soil enzyme activity and bacterial community profiles. J Microbiol Methods 81:48–55. https://doi.org/10.1016/j.mimet.2010.01.021

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Abellan MA, Baena CW, Morote FAG, Cordoba MIP, Perez DC (2011) Influence of the soil storage method on soil enzymatic activities in Mediterranean forest soils. For Syst 20:379–388. https://doi.org/10.5424/fs/20112003-11081

    Article  Google Scholar 

  39. 39.

    Lopes AAC, Sousa DMG, Reis Junior FB, Mendes IC (2015) Air-drying and longterm storage effects on β-glucosidase, acid phosphatase and arylsulfatase activities in a tropical Savannah Oxisol. Appl Soil Ecol 93(68–77):2015. https://doi.org/10.1016/j.apsoil.2015.04.001

    Article  Google Scholar 

  40. 40.

    Aon MA, Colaneri AC (2001) Temporal and spatial evolution of enzymatic activities and physic-chemical properties in an agricultural soil. Appl Soil Ecol 18:255–270. https://doi.org/10.1016/S0929-1393(01)00161-5

    Article  Google Scholar 

  41. 41.

    Eivazi F, Tabatabai MA (1990) Factors affecting glucosidase and galactosidase activities in soils. Soil Biol Biochem 22:891–897. https://doi.org/10.1016/0038-0717(90)90,126-K

    Article  CAS  Google Scholar 

  42. 42.

    Niemi RM, Vepsalainen M, Wallenius K, Simpanen S, Alakukku L, Pietola L (2005) Temporal and soil depth-related variation in soil enzyme activities and in root growth of red clover (Trifolium pratense) and timothy (Phleum pratense) in the field. Appl Soil Ecol 30:113–125. https://doi.org/10.1016/j.apsoil.2005.02.003

    Article  Google Scholar 

  43. 43.

    Ulrich S, Tisher S, Hofmann B, Christen O (2010) Biological soil properties in a long-term tillage trial in Germany. J Plant Nutr Soil Sci 173:483–489. https://doi.org/10.1002/jpln.200700316

    Article  CAS  Google Scholar 

  44. 44.

    Mei N, Yang B, Tian P (2019) Using a modified soil quality index to evaluate densely tilled soils with different yields in Northeast China. Environ Sci Pollut Res 26:13867–13877. https://doi.org/10.1007/s11356-018-3946-2

    Article  CAS  Google Scholar 

  45. 45.

    Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW et al. (eds) Defining soil quality for a sustainable environment. SSSA Spec. Publ. 35. SSSA and ASA, Madison, p 1–21. https://acsess.onlinelibrary.wiley.com/doi/book/10.2136/sssaspecpub35. Accessed 20 Jan 2020

  46. 46.

    Moore JM, Klose S, Tabatabai MA (2000) Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol Fert Soils 31:200–210. https://doi.org/10.1007/s003740050646

    Article  CAS  Google Scholar 

  47. 47.

    Franzluebbers AJ (2002) Soil organic matter stratification ratio as an indicator of soil quality. Soil Till Res 66:95–106. https://doi.org/10.1016/S0167-1987(02)00018-1

    Article  Google Scholar 

  48. 48.

    Acosta-Martínez V, Upchurch DR, Schubert AM, Porter D, Wheeler T (2004) Early impacts of cotton and peanut cropping systems on selected soil chemical, physical, microbiological and biochemical properties. Biol Fertil Soils 40:44–54. https://doi.org/10.1007/s00374-004-0745-3

    Article  Google Scholar 

  49. 49.

    Acosta-Martínez V, Lascano R, Calderón F, Booker JD, Zobeck TM, Upchurch DR (2011) Dryland cropping systems influence the microbial biomass and enzyme activities in a semiarid sandy soil. Biol Fertil Soils 47:655–667. https://doi.org/10.1007/s00374-011-0565-1

    Article  CAS  Google Scholar 

  50. 50.

    Sá JCM, Séguy L, Tivet F, Lal R, Bouzinac S, Borszowskei PR, Briedis C, dos Sántos JB, da Cruz Hartman D, Bertoloni CG, Rosa J, Friedrich T (2015) Carbon depletion by plowing and its restoration by no-till cropping systems in Oxisols of subtropical and tropical agro-ecoregions in Brazil. Land Degrad Develop 26:531–543. https://doi.org/10.1002/ldr.2218

    Article  Google Scholar 

  51. 51.

    Dick RP, Burns RG (2011) A brief history of soil enzymology research. In: Dick RP (ed) Methods of soil enzymology. SSSA Book Ser. 9. SSSA, Madison, p 1–19. https://www.wiley.com/en-us/Methods+of+Soil+Enzymology-p-9780891188544. Accessed 20 Jan 2020

  52. 52.

    Vinhal-Freitas IC, Corrêa GF, Wendling B, Bobul’skác, L., Ferreira, A.S., (2017) Soil textural class plays a major role in evaluating the effects of land use on soil quality indicators Ecol. Indic 74:182–190. https://doi.org/10.1016/j.ecolind.2016.11.020

    Article  CAS  Google Scholar 

  53. 53.

    Ryan MH, Ash JE (1999) Effects of phosphorus and nitrogen on growth of pasture plants and VAM fungi in SE Australian soils with contrasting fertiliser histories (conventional and biodynamic). Agric Ecosyst Environ 73:51–62. https://doi.org/10.1016/S0167-8809(99)00014-6

    Article  Google Scholar 

  54. 54.

    Liebig MA, Gross JR, Kronberg SL, Hanson JD, Frank AB, Phillips RL (2006) Soil response to long-term grazing in the northern Great Plains of North America. Agric Ecosys Environ 115:270–276. https://doi.org/10.1016/j.agee.2005.12.015

    Article  Google Scholar 

Download references

Acknowledgements

We thank Clodoaldo A. de Sousa, Lucas F.L.S. Rolim, and Osmar T. Oliveira.

Funding

This work was financed by the Brazilian Agricultural Research Corporation (Embrapa, project 02.14.01.026.00) and partially financed by the National Council for Scientific and Technological Development (CNPq), Edital Universal (grant number 404764/2016-9), by the Research Support Foundation of the Federal District (FAPDF), Edital Demanda Espontânea 2016 (grant number 1355/2016) and by the MCTI/CNPq/CAPES/FAPS (INCT-MPCPAgro). I.C. Mendes and C.C. Figueiredo acknowledge a research fellowship from the CNPq.

Author information

Affiliations

Authors

Contributions

Conceptualization: Ieda de Carvalho Mendes, André Alves de Castro Lopes, Djalma Martinhão Gomes de Sousa.

Methodology: André Alves de Castro Lopes; Júlio Cesar Bogiani

Formal analysis and investigation: André Alves de Castro Lopes, Juaci Vitoria Malaquias

Writing—original draft preparation: André Alves de Castro Lopes, Cícero Célio de Figueiredo, Ieda de Carvalho Mendes

Writing—review and editing: Ieda de Carvalho Mendes, Fábio Bueno dos Reis Junior, Cícero Célio de Figueiredo

Supervision: Ieda de Carvalho Mendes

Corresponding author

Correspondence to Ieda de Carvalho Mendes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: Acacio Aparecido Navarrete

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Castro Lopes, A.A., Bogiani, J.C., de Figueiredo, C.C. et al. Enzyme activities in a sandy soil of Western Bahia under cotton production systems: short-term effects, temporal variability, and the FERTBIO sample concept. Braz J Microbiol (2021). https://doi.org/10.1007/s42770-021-00606-z

Download citation

Keywords

  • β-glucosidase
  • Acid phosphatase
  • Arylsulfatase
  • Soil health
  • Soil quality
  • Cerrado