Skip to main content

Advertisement

Log in

Highly specific and rapid molecular detection of Candida glabrata in clinical samples

  • Bacterial, Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The most common nosocomial fungal infections are caused by several species of Candida, of which Candida glabrata is the second most frequently isolated species from bloodstream infections. C. glabrata displays relatively high minimal inhibitory concentration values (MIC) to the antifungal fluconazole and is associated with high mortality rates. To decrease mortality rates, the appropriate treatment must be administered promptly. C. glabrata contains in its genome several non-identical copies of species-specific sequences. We designed three pairs of C. glabrata-specific primers for endpoint PCR amplification that align to these species-specific sequences and amplify the different copies in the genome. Using these primers, we developed a fast, sensitive, inexpensive, and highly specific PCR-based method to positively detect C. glabrata DNA in a concentration-dependent manner from mixes of purified genomic DNA of several Candida species, as well as from hemocultures and urine clinical samples. This tool can be used for positive identification of C. glabrata in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All plasmids and yeast strains are available upon request.

The oligonucleotide pairs Cg1, Cg2, and Cg3 described in this work were designed by A. D. L. P. and have been included in patents MX352246 B and EP2410052 B1.

References

  1. Chang A, Neofytos D, Horn D (2008) Candidemia in the 21st century. Future Microbiol 3(4):463–472. https://doi.org/10.2217/17460913.3.4.463

    Article  CAS  PubMed  Google Scholar 

  2. Perlroth J, Choi B, Spellberg B (2007) Nosocomial fungal infections: epidemiology, diagnosis and treatment. Med Mycol 45(4):321–346

    Article  PubMed  Google Scholar 

  3. Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36(1):1–53

    Article  PubMed  Google Scholar 

  4. Kullberg BJ, Arendrup MC (2015) Invasive Candidiasis. N Engl J Med 373(15):1445–1456. https://doi.org/10.1056/NEJMra1315399

    Article  CAS  PubMed  Google Scholar 

  5. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ (2018) Invasive candidiasis Nat Rev Dis Primers 4:18026. https://doi.org/10.1038/nrdp.2018.26

    Article  PubMed  Google Scholar 

  6. Richardson M, Lass-Florl C (2008) Changing epidemiology of systemic fungal infections. Clin Microbiol Infect 14:5–24. https://doi.org/10.1111/j.1469-0691.2008.01978.x

    Article  PubMed  Google Scholar 

  7. Richardson M, Rautemaa R (2009) How the host fights against Candida infections. Front Biosci (Landmark Ed) 14:4363–4375. https://doi.org/10.2741/3533

    Article  CAS  Google Scholar 

  8. Toda M, Williams SR, Berkow EL, Farley MM, Harrison LH, Bonner L et al (2019) Population-based active surveillance for culture-confirmed candidemia - four sites, United States, 2012–2016. MMWR Surveill Summ 68(8):1–15. https://doi.org/10.15585/mmwr.ss6808a1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A (2017) The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis 17(12):e383–e392. https://doi.org/10.1016/S1473-3099(17)30316-X

    Article  PubMed  Google Scholar 

  10. Garey KW, Rege M, Pai MP, Mingo DE, Suda KJ, Turpin RS et al (2006) Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis 43(1):25–31. https://doi.org/10.1086/504810

    Article  CAS  PubMed  Google Scholar 

  11. Puig-Asensio M, Peman J, Zaragoza R, Garnacho-Montero J, Martin-Mazuelos E, Cuenca-Estrella M et al (2014) Impact of therapeutic strategies on the prognosis of candidemia in the ICU. Crit Care Med 42(6):1423–1432. https://doi.org/10.1097/CCM.0000000000000221

    Article  CAS  PubMed  Google Scholar 

  12. Clancy CJ, Nguyen MH 2018 Diagnosing invasive Candidiasis. J Clin Microbiol;56(5). https://doi.org/10.1128/JCM.01909-17

  13. Phoompoung P, Chayakulkeeree M (2016) Recent progress in the diagnosis of pathogenic Candida species in blood culture. Mycopathologia 181(5–6):363–369. https://doi.org/10.1007/s11046-016-0003-x

    Article  PubMed  Google Scholar 

  14. Arvanitis M, Anagnostou T, Fuchs BB, Caliendo AM, Mylonakis E (2014) Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin Microbiol Rev 27(3):490–526. https://doi.org/10.1128/CMR.00091-13

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fuchs S, Lass-Florl C, Posch W 2019 Diagnostic performance of a novel multiplex PCR assay for Candidemia among ICU patients. J Fungi (Basel);5(3). https://doi.org/10.3390/jof5030086

  16. Clancy CJ, Nguyen MH (2013) Finding the “missing 50%” of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis 56(9):1284–1292. https://doi.org/10.1093/cid/cit006

    Article  PubMed  Google Scholar 

  17. Ausubel F, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (2001) Current protocols in molecular biology. Wiley, New York, NY

    Book  Google Scholar 

  18. Gallegos-Garcia V, Pan SJ, Juarez-Cepeda J, Ramirez-Zavaleta CY, Martin-del-Campo MB, Martinez-Jimenez V et al (2012) A novel downstream regulatory element cooperates with the silencing machinery to repress EPA1 expression in Candida glabrata. Genetics 190(4):1285–1297. https://doi.org/10.1534/genetics.111.138099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes–application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  20. Riera MA, Rojas ME, Zapata PD (2010) Protocolo de extracción de DNA por salting-out para pequeños volúmenes de sangre. Rev Cienc Tecnol 12(14):4–7

    CAS  Google Scholar 

  21. Diekema D, Arbefeville S, Boyken L, Kroeger J, Pfaller M (2012) The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis 73(1):45–48. https://doi.org/10.1016/j.diagmicrobio.2012.02.001

    Article  PubMed  Google Scholar 

  22. Cormack BP, Ghori N, Falkow S (1999) An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science 285(5427):578–582

    Article  CAS  PubMed  Google Scholar 

  23. White PL, Shetty A, Barnes RA (2003) Detection of seven Candida species using the Light-Cycler system. J Med Microbiol 52(Pt 3):229–238. https://doi.org/10.1099/jmm.0.05049-0

    Article  PubMed  Google Scholar 

  24. White TJ, Bruns, T, Lee, S, Taylor J 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. San Diego, USA: Academic Press, Inc; p. 315-22

  25. Fujita SI, Senda Y, Nakaguchi S, Hashimoto T (2001) Multiplex PCR using internal transcribed spacer 1 and 2 regions for rapid detection and identification of yeast strains. J Clin Microbiol 39(10):3617–3622. https://doi.org/10.1128/JCM.39.10.3617-3622.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Editorial. Correction: Stop neglecting fungi. Nat Microbiol. 2017;2:17123. https://doi.org/10.1038/nmicrobiol.2017.123

  27. Corzo-Leon DE, Alvarado-Matute T, Colombo AL, Cornejo-Juarez P, Cortes J, Echevarria JI et al (2014) Surveillance of Candida spp bloodstream infections: epidemiological trends and risk factors of death in two Mexican tertiary care hospitals. PLoS ONE 9(5):e97325. https://doi.org/10.1371/journal.pone.0097325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pfaller M, Neofytos D, Diekema D, Azie N, Meier-Kriesche HU, Quan SP et al (2012) Epidemiology and outcomes of candidemia in 3648 patients: data from the Prospective Antifungal Therapy (PATH Alliance(R)) registry, 2004–2008. Diagn Microbiol Infect Dis 74(4):323–331. https://doi.org/10.1016/j.diagmicrobio.2012.10.003

    Article  PubMed  Google Scholar 

  29. Fernandez J, Erstad BL, Petty W, Nix DE (2009) Time to positive culture and identification for Candida blood stream infections. Diagn Microbiol Infect Dis 64(4):402–407. https://doi.org/10.1016/j.diagmicrobio.2009.04.002

    Article  PubMed  Google Scholar 

  30. Pfaller MA, Wolk DM, Lowery TJ (2016) T2MR and T2Candida: novel technology for the rapid diagnosis of candidemia and invasive candidiasis. Future Microbiol 11(1):103–117. https://doi.org/10.2217/fmb.15.111

    Article  CAS  PubMed  Google Scholar 

  31. Cormack BP, Falkow S (1999) Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics 151(3):979–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Correia A, Sampaio P, James S, Pais C (2006) Candida bracarensis sp. nov., a novel anamorphic yeast species phenotypically similar to Candida glabrata. Int J Syst Evol Microbiol 56(Pt 1):313–7. https://doi.org/10.1099/ijs.0.64076-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Lina Riego, Dr. Héctor Mora, and Dr. Celia Pais for providing reference strains and Dr. Areli Martínez, Dr. José Sifuentes, Dr. Pedro Torres from Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán: INCMNSZ, and Dr. Javier Araujo from Hospital Central Ignacio Morones Prieto for providing Candida sp. clinical isolates and blood cultures.

We thank Mayra Cuéllar-Cruz for technical support in the initial experiments.

The authors also thank Verónica Zárate and LANBAMA-IPICYT for sample sequencing.

Funding

This work was supported by Consejo Nacional de Ciencia y Tecnología (CONACyT) Grants No. CB 2005–01-48304 and No. CB 2014–239629 to I.C. and Fondo Sectorial de Salud-CONACyT to A. D. L. P. No. 2005–13927.

O.H.-C.; C.H.-H.; and M.S.H.-B. were supported by CONACyT fellowship nos. 611321, 279,071, and 932,042 respectively. B.E.G.-G. was supported by a postdoctoral fellowship from CONACyT No. 205158 and G.H.-H. received a CEN BES fellowship by Secretaría de Educación Pública and a fellowship from IPICYT.

Author information

Authors and Affiliations

Authors

Contributions

C. H. H.; G. H. H.; and B. E. G. G. were involved in the optimization of PCR conditions. O. H. C.; C. H. H.; G. H. H.; M. S. H. B.; and B. E. G. G. performed PCR identification of Candida isolates, hemocultures, and urine samples and API® ID 32C validation experiments. G. G. E. planned and executed experiments. O. H. C. and C. H.-H. determined minimal amount of DNA detected. N. I. G. G. and D. B. P. wrote and followed up the patent applications. A. D. L. P. and I. C. were involved in conceptualization, design of the experiments, and design of the species-specific oligonucleotide pairs. I. C. wrote the manuscript and all authors were involved in reviewing and editing of the manuscript.

Corresponding author

Correspondence to Irene Castaño.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1110 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Carreón, O., Hernández-Howell, C., Hernández-Hernández, G. et al. Highly specific and rapid molecular detection of Candida glabrata in clinical samples. Braz J Microbiol 52, 1733–1744 (2021). https://doi.org/10.1007/s42770-021-00584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00584-2

Keywords

Navigation