Skip to main content

Optimization of bioprocess of Schleiferilactobacillus harbinensis Ca12 and its viability in frozen Brazilian berries (Açai, Euterpe oleracea Mart.)

Abstract

Amazonian palm berries (açaí, Euterpe oleracea Mart.) are fruits with high nutritional value and antioxidant activity and have aroused the interest of consumers, popularizing fruit pulps enriched with probiotics. Amazonian palm berries (açaí, Euterpe oleracea Mart.) are fruits with high nutritional potential, providing a source of carbohydrates, fibers, proteins, lipids, vitamins, and minerals. Furthermore, açai provides several health benefits, including antioxidant activity. Nutritionally enhanced foods have aroused the interest of consumers, popularizing fruit pulps enriched with probiotics. Probiotics are dietary supplements consisting of live, beneficial microorganisms in the host which improve the intestinal microbiota. The objective of this study was to isolate, identify, and characterize the probiotic potential of an isolated Schleiferilactobacillus harbinensis strain (dubbed Ca12) and provide an optimized bioprocess for its production, using the complete factorial and central rotational compound design to supplement the frozen açai pulp. The isolated strain S. harbinensis Ca12 presented adequate resistance to gastric juice and bile salts, microbial activity against different Candida strains, self-aggregation and coaggregation properties, high adhesion in HT-29 cells, and 35% inhibition of Salmonella in HT-29 cells. When optimized, the cellular biomass production of the S. harbinensis Ca12 strain was approximately 600% higher than the unsupplemented whey, with a production of 3.6 × 1010 CFU mL−1. The S. harbinensis Ca12 strain’s viability in the creamy and traditional frozen açai pulp was shown to be stable for up to 6 months at 20 °C. The impact of this study involved for the first time the S. harbinensis Ca12 described in the Brazilian cocoa pulp with activity against Candida albicans of clinical importance, creating the potential of a new functional food with important benefits to human health as prevention for candidiasis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. 1.

    FAO/WHO (2006) Probiotics in food health and nutritional properties and guidelines for evaluation. FAO Food and Nutrition. https://agris.fao.org/agrissearch/search.do?recordID=XF2007431319. Accessed 20 Jun 2020

  2. 2.

    Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy JM, Dequenne I, De Timary P, Cani PD (2020) How probiotics affect the microbiota. Front Cell Infect Microbiol 9:454. https://doi.org/10.3389/fcimb.2019.00454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. 3.

    Suez J, Zmora N, Segal E, Elinav E (2019) The pros, cons, and many unknowns of probiotics. Nat Med 25:716–729. https://doi.org/10.1038/s41591-019-0439-x

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Guimarães GM, Soares LA, Silva TNL, Carvalho ILQ, Valadares HMS, Sodré GA, Gonçalves DB, Neumann E, Fonseca FG, Vinderola G, Granjeiro PA, Magalhães JT (2020) Cocoa pulp as alternative food matrix for probiotic delivery. Recent Pat Food Nutr Agric 11:82–90. https://doi.org/10.2174/2212798410666190408151826

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Miyamoto M, Seto Y, Hao DH, Teshima T, Sun YB, Kabuki T, Yao LB, Nakajima H (2005) Lactobacillus harbinensis sp. nov., consisted of strains isolated from traditional fermented vegetables ‘Suan cai’ in Harbin, Northeastern China and Lactobacillus perolens DSM 12745. Syst Appl Microbiol 28:688–694. https://doi.org/10.1016/j.syapm.2005.04.001

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Laureys D, De Vuyst L (2014) Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation. Appl Environ Microbiol 80:2564–2572. https://doi.org/10.1128/AEM.03978-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Leeber S (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70:2782–2858. https://doi.org/10.1099/ijsem.0.004107

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Vasudha V, Mishra HN (2013) Non dairy probiotic beverages. Int Food Res J 20:7–15

    CAS  Google Scholar 

  9. 9.

    Costa MGM, Ooki GN, Vieira ADS, Bedani R, Saad SMI (2017) Synbiotic Amazonian palm berry (açai, Euterpe oleracea Mart.) ice cream improved Lactobacillus rhamnosus GG survival to simulated gastrointestinal stress. Food Funct 8:731–740. https://doi.org/10.1039/c6fo00778c

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Min M, Bunt CR, Mason SL, Hussain MA (2018) Non-dairy probiotic food products: an emerging group of functional foods. Crit Rev Food Sci Nutr 59:2626–2641. https://doi.org/10.1080/10408398.2018.1462760

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Yamaguchi KK, Pereira LF, Lamarão CV, Lima ES, Da Veiga-Junior VF (2015) Amazon açaí: chemistry and biological activities: a review. Food Chem 179:137–151. https://doi.org/10.1016/j.foodchem.2015.01.055

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Paz M, Gúllon P, Barroso MF, Carvalho AP, Domingues VF, Gomes AM, Becker H, Longhinotti E, Delerue-Matos C (2015) Brazilian fruit pulps as functional foods and additives: evaluation of bioactive compounds. Food Chem 172:462–468. https://doi.org/10.1016/j.foodchem.2014.09.102

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Latha S, Sivaranjani G, Dhanasekaran D (2017) Response surface methodology: a non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites. Cri Rev Microbiol 43:567–582. https://doi.org/10.1080/1040841X.2016.1271308

    Article  CAS  Google Scholar 

  14. 14.

    Ficoseco CA, Mansilla FI, Maldonado NC, Miranda H, Nader-Macias MEF, Vignolo GM (2018) Safety and growth optimization of lactic acid bacteria isolated from feedlot cattle for probiotic formula design. Front Microbiol 9:1–12. https://doi.org/10.3389/fmicb.2018.02220

    Article  Google Scholar 

  15. 15.

    Boumaiza M, Colarusso A, Parrilli E, Garcia-Fruitós E, Casillo A, Arís A, Corsaro MM, Picone D, Leone S, Tutino ML (2018) Getting value from the waste: recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey. Microbiol Cell Fact 17:1–9. https://doi.org/10.1186/s12934-018-0974-z

    Article  CAS  Google Scholar 

  16. 16.

    Carvalho F, Prazeres AR, Rivas J (2013) Cheese whey wastewater: characterization and treatment. Sci Total Environ 445:385–396. https://doi.org/10.1016/j.scitotenv.2012.12.038

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Pescuma M, Valdez GF, Mozzj F (2015) Whey-derived valuable products obtained by microbial fermentation. Appl Microbiol Biotechnol 99:6183–6196. https://doi.org/10.1007/s00253-015-6766-z

    Article  PubMed  CAS  Google Scholar 

  18. 18.

    Ryan MP, Walsh G (2016) The biotechnological potential of whey. Rev Environ Sci Biotechnol 15:479–498. https://doi.org/10.1007/s11157-016-9402-1

    Article  CAS  Google Scholar 

  19. 19.

    Gagnon M, Hamelin L, Fréchette A, Dufour S, Roy D (2020) Effect of recycled manure solids as bedding on bulk tank milk and implications for cheese microbiological quality. J Dairy Sci 103:128–140. https://doi.org/10.3168/jds.2019-16812

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Gregoret V, Perezlindo MJ, Vinderola G, Reinheimer J, Binetti A (2013) A comprehensive approach to determine the probiotic potential of human-derived Lactobacillus for industrial use. Food Microbiol 34:19–28. https://doi.org/10.1016/j.fm.2012.11.004

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Nair RG, Anil S, Samaranayake LP (2001) The effect of oral bacteria on Candida albicans germ-tube formation. APMIS 109:147–154. https://doi.org/10.1034/j.1600-0463.2001.d01-116.x

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Gómez NC, Ramiro JM, Quecan BX, De Melo Franco BD (2016) Use of potential probiotic lactic acid bacteria (Lab) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 biofilms formation. Front Microbiol 7:863–877. https://doi.org/10.3389/fmicb.2016.00863

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Tulini FL, Winkelströter LK, De Martinis EC (2013) Identification and evaluation of the probiotic potential of Lactobacillus paraplantarum FT259, a bacteriocinogenic strain isolated from Brazilian semi-hard artisanal cheese. Anaerobe 22:57–63. https://doi.org/10.1016/j.anaerobe.2013.06.006

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Miller GL (1959) Uso de reagente de ácido dinitrosalicílico para determinação de açúcares redutores. Anal Chem 31(3):426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  26. 26.

    Baranyi J, Pin C, Ross T (1999) Validating and comparing predictive models. Int J Food Microbiol 48:159–166. https://doi.org/10.1016/s0168-1605(99)00035-5

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Brazil. Ministry of Agriculture, Livestock and Food Supply-Normative ruling No. 01, 7th Jan (2000) General technical regulation for setting the identity and quality standards for fruit pulp as per Annex I of this normative ionstruction. Official Journal of the Union, Brasília, 10th September 1999

  28. 28.

    Schwan RF, Wheals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44:205–221. https://doi.org/10.1080/10408690490464104

    Article  PubMed  CAS  Google Scholar 

  29. 29.

    Meersman E, Steensels J, Mathawan M, Wittocx PJ, Saels V, Struyf N, Bernaet H, Vrancken G, Verstrepen KJ (2013) Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota. PLoS ONE 8:e81559. https://doi.org/10.1371/journal.pone.0081559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Solieri L, Bianchi A, Mottolese G, Lemmetti F, Giudici P (2014) Tailoring the probiotic potential of non-starter Lactobacillus strains from ripened Parmigiano Reggiano cheese by in vitro screening and principal component analysis. Food Microbiol 38:240–249. https://doi.org/10.1016/j.fm.2013.10.003

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Vinderola CG, Capellini B, Villarreal F, Suárez V, Quiberoni A, Reinheimer J (2008) Usefulness of a set of simple in vitro tests for the screening and identification of probiotic candidate strains for dairy use. LWT - Food Sci Technol 41:1678–1688. https://doi.org/10.1016/j.lwt.2007.10.008

    Article  CAS  Google Scholar 

  32. 32.

    Baruzzi F, Poltronieri P, Quero GM, Morea M, Morelli L (2011) An in vitro protocol for direct isolation of potential probiotic lactobacilli from raw bovine milk and traditional fermented milks. Appl Microbiol Biotechnol 90(1):331–342. https://doi.org/10.1007/s00253-011-3133-6

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Liu Q, Ni X, Wang Q, Peng Z, Niu L, Xie M, Lin Y, Zhou Y, Sun H, Pan K, Jing B, Zeng D (2019) Investigation of lactic acid bacteria isolated from giant panda feces for potential probiotics in vitro. Probiotics Antimicrob Proteins 11(1):85–91. https://doi.org/10.1007/s12602-017-9381-8

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Zavaglia AG, Kociubinski G, Pérez P, De Antoni G (1998) Isolation and characterization of Bifidobacterium strains for probiotic formulation. J Food Prot 61:865–873. https://doi.org/10.4315/0362-028x-61.7.865

    Article  CAS  Google Scholar 

  35. 35.

    Kumar M, Ghosh M, Ganguli A (2012) Mitogenic response and probiotic characteristics of lactic acid bacteria isolated from indigenously pickled vegetables and fermented beverages. World J Microbiol Biotechnol 28(2):703–711. https://doi.org/10.1007/s11274-011-0866-4

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Fraqueza MJ (2015) Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages. Int J Food Microbiol 212:76–88. https://doi.org/10.1016/j.ijfoodmicro.2015.04.035

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Guan X, Xu Q, Zheng Y, Qian L, Lin B (2017) Screening and characterization of lactic acid bacterial strains that produce fermented milk and reduce cholesterol levels. Braz J Microbiol 48(4):730–739. https://doi.org/10.1016/j.bjm.2017.02.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. 38.

    Das DJ, Shankar A, Johnson JB, Thomas S (2020) Critical insights into antibiotic resistance transferability in probiotic Lactobacillus. Nutr 69:110567. https://doi.org/10.1016/j.nut.2019.110567

    Article  CAS  Google Scholar 

  39. 39.

    Crowley S, Mahony J, Sinderen D (2013) Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives. Trends Food Sci Techno 33:93–109. https://doi.org/10.1016/j.tifs.2013.07.004

    Article  CAS  Google Scholar 

  40. 40.

    Mosbah A, Delavenne E, Souissi Y, Mahjoubi M, Jéhan P, Le YN, Cherif A, Bondon A, Mounier J, Baudy-Floc’h M, Le Blay G (2018) Novel antifungal compounds, spermine-like and short cyclic polylactates, produced by Lactobacillus harbinensis K.V9.3.1Np in Yogurt. Front Microbiol 9:1–10. https://doi.org/10.3389/fmicb.2018.02252

    Article  Google Scholar 

  41. 41.

    Gil NF, Martinez RCR, Gomes BC, Nomizo A, Martinis ECPD (2010) Vaginal lactobacilli as potential probiotics against Candida spp. Braz J Microbiol 41:6–14. https://doi.org/10.1590/S1517-83822010000100002

    Article  PubMed  Google Scholar 

  42. 42.

    Reid G, Bruce AW, Fraser N, Heinemann C, Owen J, Henning B (2001) Oral probiotics can resolve urogenital infections. FEMS Immunol Med Microbiol 30:49–52. https://doi.org/10.1111/j.1574-695X.2001.tb01549.x

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Gardiner GE, Heinemann C, Baroja ML, Bruce AW, Beuerman D, Madrenas J, Reid G (2002) Oral administration of the probiotic combination Lactobacillus rhamnosus GR-1 and L. fermentum RC-14 for human intestinal applications. Int Dairy J 12:191–196. https://doi.org/10.1016/S0958-6946(01)00138-8

    Article  CAS  Google Scholar 

  44. 44.

    Cribby S, Taylor M, Reid G (2008) Vaginal microbiota and the use of probiotics. Interdiscip Perspect Infec Dis 2008:1–9. https://doi.org/10.1155/2008/256490

    Article  CAS  Google Scholar 

  45. 45.

    Lee HK, Choi SH, Lee CR, Lee SH, Park MR, Kim Y, Lee MK, Kim GB (2015) Screening and characterization of lactic acid bacteria strains with anti-inflammatory activities through in vitro and caenorhabditis elegans model testing. Korean J Food Sci Anim Resour 35(1):91–100. https://doi.org/10.5851/kosfa.2015.35.1.91

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Todorov SD, LeBlanc JG, Franco BD (2012) Evaluation of the probiotic potential and effect of encapsulation on survival for Lactobacillus plantarum ST16Pa isolated from papaya. World J Microbiol Biotechnol 28:973–984. https://doi.org/10.1007/s11274-011-0895-z

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Zhang J, Zhang X, Zhang L, Zhao Y, Niu C, Yang Z, Li S (2014) Potential probiotic characterization of Lactobacillus plantarum strains isolated from Inner Mongolia “Hurood” cheese. J Microbiol Biotechnol 24:225–235. https://doi.org/10.4014/jmb.1308.08075

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Ramos CL, Thorsen L, Schwan RF, Jespersen L (2013) Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol 36(1):22–29. https://doi.org/10.1016/j.fm.2013.03.010

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Hayek SA, Ibrahim SA (2013) Current limitations and challenges with lactic acid bacteria: a review. Food Nutri Sci 4:73–87. https://doi.org/10.4236/fns.2013.411A010

    Article  CAS  Google Scholar 

  50. 50.

    Zacharof MP, Lovitt RW (2013) Partially chemically defined liquid medium development for intensive propagation of industrial fermentation lactobacilli strains. Ann Microbiol 63:1235–1245. https://doi.org/10.1007/s13213-012-0581-x

    Article  CAS  Google Scholar 

  51. 51.

    Calderon M, Loiseau G, Guyot JP (2001) Nutritional requirements and simplified cultivation medium to study growth and energetics of a sourdough lactic acid bacterium Lactobacillus fermentum Ogi E1 during heterolactic fermentation of starch. J Appl Microbiol 90:508–516. https://doi.org/10.1046/j.1365-2672.2001.01272.x

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Li L, Ma Y (2014) Effects of metal ions on growth, β-oxidation system, and thioesterase activity of Lactococcus lactis. J Dairy Sci 975975-5982. https://doi.org/10.3168/jds.2014-8047

  53. 53.

    Lew LC, Liong MT, Gan CY (2013) Growth optimization of Lactobacillus rhamnosus FTDC 8313 and the production of putative dermal bioactives in the presence of manganese and magnesium ions. J Appl Microbiol 114:526–535. https://doi.org/10.1111/jam.12044

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Manzoor A, Qazi JI, Haq IU, Mukhtar H, Rasool A (2017) Significantly enhanced biomass production of a novel bio-therapeutic strain Lactobacillus plantarum (AS-14) by developing low cost media cultivation strategy. J Biol Eng 11:1–10. https://doi.org/10.1186/s13036-017-0059-2

    Article  CAS  Google Scholar 

  55. 55.

    Todorov S, Dicks L (2004) Effect of medium components on bacteriocin production by Lactobacillus pentosus ST151BR, a strain isolated from beer produced by the fermentation of maize, barley and soy flour. World J Microbiol Biotech 20:643–650. https://doi.org/10.1007/s11274-011-0895-z

    Article  CAS  Google Scholar 

  56. 56.

    Chiang ML, Chen HC, Chen KN, Lin YC, Lin YT, Chen MJ (2015) Optimizing production of two potential probiotic Lactobacilli strains isolated from piglet feces as feed additives for weaned piglets. Asian-Australas J Anim Sci 28:1163–1170. https://doi.org/10.5713/ajas.14.0780

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Shori AB (2016) Influence of food matrix on the viability of probiotic bacteria: a review based on dairy and non-dairy beverages. Food Biosci 13:1–8. https://doi.org/10.1016/j.fbio.2015.11.001

    Article  CAS  Google Scholar 

  58. 58.

    Cruz AG, Antunes AE, Sousa ALO, Faria JÁ, Saad SM (2009) Ice-cream as a probiotic food carrier. Food Res Int 42:1233–1239. https://doi.org/10.1016/j.foodres.2009.03.020

    Article  Google Scholar 

  59. 59.

    Santos SV, de Almeida Teixeira GH, Barbosa F Jr (2014) Açaí Euterpe oleracea Mart.: a tropical fruit with high levels of essential minerals-especially manganese-and its contribution as a source of natural mineral supplementation. J Toxicol Environ Health 77:80–89. https://doi.org/10.1080/15287394.2014.866923

    Article  CAS  Google Scholar 

  60. 60.

    Neri-Numa IA, Sancho RAS, Pereira APA, Pastore GM (2018) Small Brazilian wild fruits: nutrients, bioactive compounds, health-promotion properties and commercial interest. Food Res Int 103:345–360. https://doi.org/10.1016/j.foodres.2017.10.053

    Article  PubMed  CAS  Google Scholar 

  61. 61.

    Pandiyan C, Annal Villi R, Kumaresan G, Murugan B, Rajarajan G (2012) Effect of incorporation of inulin on the survivability of Lactobacillus acidophilus in synbiotic ice cream. Int Food Res J 19:1233–1239

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the Federal University of São João Del-Rei, Minas Gerais Research Foundation (FAPEMIG), National Council for Scientific and Technological Development (CNPq), and Coordination for the Improvement of Higher Education Personnel (CAPES, Finance code 001).

Funding

This work was funded by Minas Gerais Research Foundation (FAPEMIG—APQ-00855–19).

Author information

Affiliations

Authors

Contributions

PG, DG, and JM contributed to the conception of the manuscript. HC, GG, CC, and TS selected the scope of the article and did primary literature review. MG and DR were responsible for the identification and genetic diversity investigation. GG, CC, PG, and SS were responsible for the probiotic potential assays and viability. HC and TS performed the bioprocess experiments. IC and FF performed the cell culture assays. All authors contributed to manuscript revision, read, and approved the submitted version.

Corresponding author

Correspondence to Paulo Afonso Granjeiro.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

All the authors agree to participate in the manuscript.

Consent for publication

All the authors agree with the submission to Brazilian Journal of Microbiology.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Colares, H.C., Guimarães, G.M., Couto, C.A.P. et al. Optimization of bioprocess of Schleiferilactobacillus harbinensis Ca12 and its viability in frozen Brazilian berries (Açai, Euterpe oleracea Mart.). Braz J Microbiol (2021). https://doi.org/10.1007/s42770-021-00559-3

Download citation

Keywords

  • Probiotics
  • Açai
  • Schleiferilactobacillus harbinensis
  • Bioprocess
  • Candida