Skip to main content

Advertisement

Log in

Rapid screening method of Saccharomyces cerevisiae mutants using calcofluor white and aniline blue

  • Bacterial and Fungal Pathogenesis - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Fungal cell walls are composed of polysaccharide scaffold that changes in response to environment. The structure and biosynthesis of the wall are unique to fungi, with plant and mammalian immune systems evolved to recognize wall components. Additionally, the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. Understanding changes in the cell wall are important for fundamental understanding of cell wall dynamics and for drug development. Here we describe a screening technique to monitor the gross morphological changes of two key cell wall polysaccharides of chitin and β-1,3-glucan combined with polymerase chain reaction (PCR) genotyping. Changes in chitin and β-1,3-glucan were detected microscopically by using the dyes calcofluor white and aniline blue. Combining PCR and fluorescence microscopy, as a quick and easy screening technique, confirmed both the phenotype and genotype of the wild-type, h chitin synthase mutants (chs1Δ and chs3Δ) and one β-1,3-glucan synthase mutant fks2Δ from Saccharomyces cerevisiae knockout library. This combined screening method highlighted that the fks1Δ strain obtained commercially was in fact not FKS1 deletion strain, and instead had both wild-type genotype and phenotype. A new β-1,3-glucan synthase knockout fks1::URA3 strain was created. Fluorescence microscopy confirmed its phenotype revealing that the chitin and the new β-1,3-glucan profiles were elevated in the mother cells and in the emerging buds respectively in the fks1Δ cell walls. This combination of PCR with fluorescence microscopy is a quick and easy screening method to determine and verify morphological changes in the S. cerevisiae cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol R 70(2):317–343

    Article  CAS  Google Scholar 

  2. Orlean P (2012) Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 192(3):775–818. https://doi.org/10.1534/genetics.112.144485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wood PJ, Fulcher RG (1983) Dye interactions. A basis for specific detection and histochemistry of polysaccharides. J Histochem Cytochem 31(6):823–826

    Article  CAS  Google Scholar 

  4. Douglas CM, Foor F, Marrinan JA, Morin N, Nielsen JB, Dahl AM, Mazur P, Baginsky W, Li W, el Sherbeini M, Clemas JA, Mandala SM, Frommer BR, Kurtz MB (1994) The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-β-D-glucan synthase. Proc Natl Acad Sci U S A 91:12907–12911

    Article  CAS  Google Scholar 

  5. Cabib E, Sburlati A, Bowers B, Silverman SJ (1989) Chitin synthase 1, an auxiliary enzyme for chitin synthesis in Saccharomyces cerevisiae. J Cell Biol 108:1665–1672

    Article  CAS  Google Scholar 

  6. Silverman SJ, Sburlati A, Slater ML, Cabib E (1988) Chitin synthase 2 is essential for septum formation and cell division in Saccharomyces cerevisiae. Proc Natl Acad Sci 85(13):4735–4739. https://doi.org/10.1073/pnas.85.13.4735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shaw JA, Mol PC, Bowers B, Silverman SJ, Valdivieso MH, Duran A, Cabib E (1991) The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J Cell Biol 114:111–123

    Article  CAS  Google Scholar 

  8. Roncero C, Sanchez Y (2010) Cell separation and the maintenance of cell integrity during cytokinesis in yeast: the assembly of a septum. Yeast 27:521–530

    Article  CAS  Google Scholar 

  9. Sacristan C, Manzano-Lopez J, Reyes A, Spang A, Muñiz M, Roncero C (2013) Chs3 dimerization and trafficking. Mol Microbiol 90:252–266

    CAS  PubMed  Google Scholar 

  10. Fleet GH (1985) Composition and structure of yeast cell walls. Curr Top Med Mycol 1:24–56

    Article  CAS  Google Scholar 

  11. Drgonová J, Drgon T, Tanaka K, Kollár R, Chen G-C, Ford RA, Chan CSM, Takai Y, Cabib E (1996) Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science 272(5259):277–279

    Article  Google Scholar 

  12. Inoue SB, Takewaki N, Takasuka T, Mio T, Adachi M, Fujii Y, Miyamoto C, Arisawa M, Furuichi Y, Watanabe T (1995) Characterization and gene cloning of 1,3-beta-D-glucan synthase from Saccharomyces cerevisiae. Eur J Biochem 231(3):845–854

    Article  CAS  Google Scholar 

  13. Qadota H, Python CP, Inoue SB, Arisawa M, Anraku Y, Zheng Y, Watanabe T, Levin DE, Ohya Y (1996) Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science 272(5259):279–281

    Article  CAS  Google Scholar 

  14. Mazur P, Morin N, Baginsky W, El-Sherbeini M, Clemas JA, Nielsen JB, Foor F (1995) Differential expression and function of two homologous subunits of yeast 1,3-β-D-glucan synthase. Mol Cell Biol 15(10):5671–5681

    Article  CAS  Google Scholar 

  15. Deutschbauer AM, Williams RM, Chu AM, Davis RW (2002) Parallel phenotypic analysis of sporulation and post germination growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99:15530–15535

    Article  CAS  Google Scholar 

  16. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418(6896):387–391

    Article  CAS  Google Scholar 

  17. Winzeler EA, Lee B, McCusker JH, Davis RW (1999) Whole genome genetic-typing in yeast using high-density oligonucleotide arrays. Parasitology 118(Suppl):S73–S80

    Article  CAS  Google Scholar 

  18. Wood MJ, Komives EA (1999) Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation. J Biomol NMR 13(2):149–159

    Article  CAS  Google Scholar 

  19. Bulawa CE, Slater ML, Cabib E, Au-Young J, Sburlati A, Adair WL, Robbins PW (1986) The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo. Cell 46:213–225

    Article  CAS  Google Scholar 

  20. Cabib E, Silverman S, Shaw J (1992) Chitinase and chitin synthase 1: counterbalancing activities in cell separation of Saccharomyces cerevisiae. J Gen Microbiol 138:97–102. https://doi.org/10.1099/00221287-138-1-97

    Article  CAS  PubMed  Google Scholar 

  21. Lam KK, Davey M, Sun B, Roth AF, Davis NG, Conibear E (2006) Palmitoylation by the DHHC protein Pfa4 regulates the ER exit of Chs3. J Cell Biol 174(1):19–25. https://doi.org/10.1083/jcb.200602049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bulik DA, Olczak M, Lucero HA, Osmond BC, Robbins PW, Specht CA (2003) Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot Cell 2(5):886–900. https://doi.org/10.1128/ec.2.5.886-900.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ziman M, Chuang JS, Schekman RW (1997) Chs1p and Chs3p, two proteins involved in chitin synthesis, populate a compartment of the Saccharomyces cerevisiae endocytic pathway. Mol Biol Cell 7(12):1909–1919

    Article  Google Scholar 

  24. Molon M, Woznicka O, Zebrowski J (2018) Cell wall biosynthesis impairment affects the budding lifespan of the Sacchromyces cerevisiae yeast. Biogerontology 19(1):67–79

    Article  CAS  Google Scholar 

  25. Cabib E, Blanco N, Arroyo J (2012) Presence of a large β(1-3)glucan linked to chitin at the Saccharomyces cerevisiae mother-bud neck suggests involvement in localized growth control. Eukaryot Cell 11(4):388–400

    Article  CAS  Google Scholar 

  26. Bulawa CE (1993) Genetics and molecular biology of chitin synthesis in fungi. Annu Rev Microbiol 47:505–534

    Article  CAS  Google Scholar 

  27. Lesage G, Shapiro J, Specht CA, Sdicu A-M, Ménard P, Hussein S, Tong AHY, Boone C, Bussey H (2005) An interactional network of genes involved in chitin synthesis in Saccharomyces cerevisiae. BMC Genet 6:8. https://doi.org/10.1186/1471-2156-6-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lesage G, Sdicu A-M, Ménard P, Shapiro J, Hussein S, Bussey H (2004) Analysis of β-1,3-glucan assembly in Saccharomyces cerevisiae using a synthetic interaction network and altered sensitivity to caspofungin. Genetics 167(1):35–49

    Article  CAS  Google Scholar 

  29. Lima S, Colombo A, de Almeida JJ (2019) Fungal cell wall: emerging antifungals and drug resistance. Front Microbiol 10:2573–2573. https://doi.org/10.3389/fmicb.2019.02573

    Article  PubMed  PubMed Central  Google Scholar 

  30. Walker L, Gow N, Munro C (2010) Fungal echinocandin resistance. Fungal Genet Biol 47(2):117–126. https://doi.org/10.1016/j.fgb.2009.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wagener J, Loiko V (2017) Recent insights into the paradoxical effect of echinocandins. J Fungi (Basel) 4(1):5. https://doi.org/10.3390/jof4010005

    Article  CAS  Google Scholar 

  32. Imtiaz T, Lee K, Munro C, MacCallum D, Shankland G, Johnson E, MacGregor M, Bal A (2012) Echinocandin resistance due to simultaneous FKS mutation and increased cell wall chitin in a Candida albicans bloodstream isolate following brief exposure to caspofungin. J Med Microbiol 61(9):1330–1334. https://doi.org/10.1099/jmm.0.045047-0

    Article  CAS  PubMed  Google Scholar 

  33. Dijkgraaf GJP, Abe M, Ohya Y, Bussey H (2002) Mutations in Fks1p affect the cell wall content of β-1,3- and β-1,6-glucan in Saccharomyces cerevisiae. Yeast 19:671–690. https://doi.org/10.1002/yea.866

    Article  CAS  PubMed  Google Scholar 

  34. Garcı́a-Rodriguez LJ, Trilla JA, Castro C, Valdivieso MH, Durán A, Roncero C (2000) Characterization of the chitin biosynthesis process as a compensatory mechanism in the fks1 mutant of Saccharomyces cerevisiae. FEBS Lett 478 (1–2): 84-88

  35. Lagorce A, Hauser NC, Labourdette D, Rodriguez C, Martin-Yken H, Arroyo J, Hoheisel JD, François J (2003) Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J Biol Chem 278:20345–20357

    Article  CAS  Google Scholar 

  36. Dague E, Bitar R, Ranchon H, Durand F, Yken HM, Francois JM (2010) An atomic force microscopy analysis of yeast mutants defective in cell wall architecture. Yeast 27:673–684

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special acknowledgement is given to the BioImaging Platform at La Trobe University and Dr. Peter Lock for the helpful advice and training on various microscopes. The authors would like to thank Dr. Ana Traven, Monash University, who supplied the pPS293 plasmid, containing the URA3 gene, and Dr. Mark Bleackley, La Trobe University, for the guidance and advice for genotyping the mutants. Thank you to Prof. Marilyn Anderson and Dr. Michael Walker for their support, advice, and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

FP-W and JP conceived and designed the research. FP-W and JP conducted the experiments. JP designed the fks1Δ::URA3 mutant and contributed to the PCR/molecular analyses, and FP-W contributed to the microscopy and to image analyses in this study. FP-W wrote the first draft manuscript, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Francine Perrine-Walker.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Rosana Puccia

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrine-Walker, F., Payne, J. Rapid screening method of Saccharomyces cerevisiae mutants using calcofluor white and aniline blue. Braz J Microbiol 52, 1077–1086 (2021). https://doi.org/10.1007/s42770-021-00515-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00515-1

Keywords

Navigation