Skip to main content
Log in

Genome profiling of fluoroquinolone-resistant uropathogenic Escherichia coli isolates from Brazil

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Urinary tract infections (UTIs) are a major public health concern in both community and hospital settings worldwide. Uropathogenic Escherichia coli (UPEC) is the main causative agent of UTI and increasingly associated with antibiotic resistance. Herein, we report the draft genome sequence of 9 fluoroquinolone-resistant UPEC isolates from Brazil and examine selected major phenotypic features, such as antimicrobial resistance profile, phylogroup, serotype, sequence type (ST), virulence genes, and resistance marks. Besides the quinolone resistance, beta-lactams, ESBL production, aminoglycosides, and tetracycline resistance were observed. High prevalence of 20 virulence genes was detected in all isolates, such as those encoding type 1 fimbriae, acid tolerance system, and hemolysin E, particularly within E. coli B2 phylogroup, as ST131 and ST1193 strains, among other genomic analyses as genomic islands, resistance plasmids, and integron identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stamm WE, Norrby SR (2001) Urinary tract infections: disease panorama and challenges. J Infect Dis 183(Suppl 1):S1-4. https://doi.org/10.1086/318850

    Article  PubMed  Google Scholar 

  2. Becknell B, Schober M, Korbel L, Spencer JD (2015) The diagnosis, evaluation and treatment of acute and recurrent pediatric urinary tract infections. Expert Rev Anti Infect Ther 13(1):81–90. https://doi.org/10.1586/14787210.2015.986097

    Article  CAS  PubMed  Google Scholar 

  3. Foxman B (2014) Urinary tract infection syndromes: occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect Dis Clin North Am 28(1):1–13. https://doi.org/10.1016/j.idc.2013.09.003

    Article  PubMed  Google Scholar 

  4. Johnson JR, Tchesnokova V, Johnston B, Clabots C, Roberts PL, Billig M, Riddell K, Rogers P, Qin X, Butler-Wu S, Price LB, Aziz M, Nicolas-Chanoine MH, Debroy C, Robicsek A, Hansen G, Urban C, Platell J, Trott DJ, Zhanel G, Weissman SJ, Cookson BT, Fang FC, Limaye AP, Scholes D, Chattopadhyay S, Hooper DC, Sokurenko EV (2013) Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli. J Infect Dis 207(6):919–28. https://doi.org/10.1093/infdis/jis933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Petty NK, Zakour NLB, Stanton-Cook M, Skippington E, Totsika M, Forde BM, Phan M-D, Moriel DG, Peters KM, Davies M, Rogers BA, Dougan G, Rodriguez-Baño J, Pascual A, Pitout JDD, Upton M, Paterson DL, Walsh TR, Schembri MA, Beatson SA (2014) Global dissemination of a multidrug resistant Escherichia coli clone. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1322678111

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zakour NLB, Alsheikh-Hussain AS, Ashcroft MM, Nhu NTK, Roberts LW, Stanton-Cook M, Schembri MA, Beatson SA, Hultgren SJ, Chakraborty T, Chen S (2016) Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. mBio 7:e00347. https://doi.org/10.1128/mBio.00347-16

    Article  PubMed  PubMed Central  Google Scholar 

  7. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B, Tchesnokova V, Nordstrom L, Billig M, Chattopadhyay S, Stegger M, Andersen PS, Pearson T, Riddell K, Rogers P, Scholes D, Kahl B, Keim P, Sokurenko EV (2013) The epidemic of extended-spectrum-β-lactamase producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. mBio 4(6). https://doi.org/10.1128/mBio.00377-13

  8. Stoesser N, Sheppard AE, Pankhurst L, Maio ND, Moore CE, Sebra R, Turner P, Anson LW, Kasarskis A, Batty EM, Kos V, Wilson DJ, Phetsouvanh R, Wyllie D, Sokurenko E, Manges AR, Johnson TJ, Price LB, Peto TEA, Johnson JR, Didelot X, Walker AS, Crook DW, (MMMIG) MMMIG, Rasko DA, Keim PS (2016) Evolutionary history of the global emergence of the Escherichia coli Epidemic Clone ST131. mBio 7:e02162. https://doi.org/10.1128/mBio.02162-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tchesnokova V, Rechkina E, Larson L, Ferrier K, Weaver JL, Schroeder DW, She R, Butler-Wu SM, Aguero-Rosenfeld ME, Zerr D, Fang FC, Ralston J, Riddell K, Scholes D, Weissman SJ, Parker K, Spellberg B, Johnson JR, Sokurenko EV (2019) Rapid and extensive expansion in the United States of a new multidrug-resistant Escherichia coli Clonal Group, Sequence Type 1193. Clin Infect Dis 68(2):334–337. https://doi.org/10.1093/cid/ciy525

    Article  CAS  PubMed  Google Scholar 

  10. Roer L, Overballe-Petersen S, Hansen F, Schønning K, Wang M, Røder BL, Hansen DS, Justesen US, Andersen LP, Fulgsang-Damgaard D, Hopkins KL, Woodford N, Falgenhauer L, Chakraborty T, Samuelsen Ø, Sjöström K, Johannesen TB, Ng K, Nielsen J, Ethelberg S, Stegger M, Hammerum AM, Hasman H, Castanheira M (2018) Escherichia coli Sequence Type 410 Is Causing New International High-Risk Clones. mSphere. https://doi.org/10.1128/mSphere.00337-18

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cergole-Novella MC, Guth BEC, Castanheira M, Carmo MS, Pignatari ACC (2010) First description of blaCTX-M-14- and blaCTX-M-15-producing Escherichia coli isolates in Brazil. Microb Drug Resist. https://doi.org/10.1089/mdr.2010.0008

    Article  PubMed  Google Scholar 

  12. Peirano G, Asensi MD, Pitondo-Silva A, Pitout JD (2011) Molecular characteristics of extended-spectrum beta-lactamase-producing Escherichia coli from Rio de Janeiro. Brazil Clin Microbiol Infect 17(7):1039–1043. https://doi.org/10.1111/j.1469-0691.2010.03440.x

    Article  CAS  PubMed  Google Scholar 

  13. Kcd Silva, Lincopan N (2012) Epidemiologia das betalactamases de espectro estendido no Brasil: impacto clínico e implicações para o agronegócio. J Bras Patol Med Lab 48(2):91–99. https://doi.org/10.1590/S1676-24442012000200004

    Article  Google Scholar 

  14. Rogers BA, Sidjabat HE, Paterson DL (2011) Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 66(1):1–14. https://doi.org/10.1093/jac/dkq415

    Article  CAS  PubMed  Google Scholar 

  15. Campos ACC, Andrade NL, Ferdous M, Chlebowicz MA, Santos CC, Correal JCD, Lo Ten Foe JR, Rosa ACP, Damasco PV, Friedrich AW, Rossen JWA (2018) Comprehensive molecular characterization of escherichia coli isolates from urine samples of hospitalized patients in Rio de Janeiro. Brazil Front Microbiol 9:243. https://doi.org/10.3389/fmicb.2018.00243

    Article  PubMed  Google Scholar 

  16. Harris PNA, Ben Zakour NL, Roberts LW, Wailan AM, Zowawi HM, Tambyah PA, Lye DC, Jureen R, Lee TH, Yin M, Izharuddin E, Looke D, Runnegar N, Rogers B, Bhally H, Crowe A, Schembri MA, Beatson SA, Paterson DL (2018) Whole genome analysis of cephalosporin-resistant Escherichia coli from bloodstream infections in Australia, New Zealand and Singapore: high prevalence of CMY-2 producers and ST131 carrying blaCTX-M-15 and blaCTX-M-27. J Antimicrob Chemother 73(3):634–642. https://doi.org/10.1093/jac/dkx466

    Article  CAS  PubMed  Google Scholar 

  17. Tritt AEJ, Facciotti MT, Darling AE (2012) An integrated pipeline for de novo assembly of microbial genomes. PLoS One 7(9):e42304. https://doi.org/10.1371/journal.pone.0042304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coil D, Jospin G, Darling A (2015) A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31(4):587–589. https://doi.org/10.1093/bioinformatics/btu661

    Article  CAS  PubMed  Google Scholar 

  19. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Simpson JT, Durbin R (2012) Efficient de novo assembly of large genomes using compressed data structures. Genome Res. https://doi.org/10.1101/gr.126953.111

    Article  PubMed  PubMed Central  Google Scholar 

  21. Peng Y, Leung HCM, Yiu SM, Chin FYL (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics (Oxford, England) 28(11):1420–8. https://doi.org/10.1093/bioinformatics/bts174

    Article  CAS  Google Scholar 

  22. Boetzer M, Henkel CV, Jansen HJ, Butler D, Pirovano W (2011) Scaffolding pre-assembled contigs using SSPACE. Bioinformatics (Oxford, England) 27(4):578–9. https://doi.org/10.1093/bioinformatics/btq683

    Article  CAS  Google Scholar 

  23. Bosi E, Donati B, Galardini M, Brunetti S, Sagot M-F, Lio P, Crescenzi P, Fani R, Fondi M (2015) MeDuSa: a multi-draft based scaffolder. Bioinformatics (Oxford, England) 31(15):2443–51. https://doi.org/10.1093/bioinformatics/btv171

    Article  CAS  Google Scholar 

  24. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund O (2012). Multilocus sequence typing of total-genome-sequenced bacteria. https://doi.org/10.1128/JCM.06094-11

    Article  Google Scholar 

  25. Nadalin F, Vezzi F, Policriti A (2012) GapFiller: a de novo assembly approach to fill the gap within paired reads. BMC Bioinformatics 13(14):1–16. https://doi.org/10.1186/1471-2105-13-S14-S8

    Article  Google Scholar 

  26. Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F, Carroll KC (2015). Rapid and easy in silico serotyping of escherichia coli isolates by use of whole-genome sequencing data. https://doi.org/10.1128/jcm.00008-15

    Article  Google Scholar 

  27. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44(14):6614–6624. https://doi.org/10.1093/nar/gkw569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Petkau A, Stuart-Edwards M, Stothard P, Van Domselaar G (2010) Interactive microbial genome visualization with GView. Bioinformatics 26(24):3125–3126. https://doi.org/10.1093/bioinformatics/btq588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu G, Lam TT, Zhu H, Guan Y (2018) Two methods for mapping and visualizing associated data on phylogeny using Ggtree. Mol Biol Evol 35(12):3041–3043. https://doi.org/10.1093/molbev/msy194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bezuidt O, Lima-Mendez G, Reva ON (2009) SeqWord gene island sniffer: a program to study the lateral genetic exchange among bacteria. Int J Comput Inform Eng 3(10):2399–2404. https://doi.org/10.5281/zenodo.1071430

    Article  Google Scholar 

  31. Cury J, Jove T, Touchon M, Neron B, Rocha EP (2016) Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res 44(10):4539–4550. https://doi.org/10.1093/nar/gkw319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moura A, Soares M, Pereira C, Leitao N, Henriques I, Correia A (2009) INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 25(8):1096–1098. https://doi.org/10.1093/bioinformatics/btp105

    Article  CAS  PubMed  Google Scholar 

  33. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM, Carroll KC (2014) Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. https://doi.org/10.1128/JCM.03617-13

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM (2017) PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemotherapy 72(10):2764–2768. https://doi.org/10.1093/jac/dkx217

    Article  CAS  Google Scholar 

  35. CLSI (2020) M100Ed30 | Performance Standards for Antimicrobial Susceptibility Testing, 30th Edition. Thirtieth edn. CLSI_LabNews, https://clsi.org/standards/products/microbiology/documents/m100/

  36. Clermont O, Christenson JK, Denamur E, Gordon DM (2013) The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 5(1):58–65. https://doi.org/10.1111/1758-2229.12019

    Article  CAS  PubMed  Google Scholar 

  37. Day MJ, Hopkins KL, Wareham DW, Toleman MA, Elviss N, Randall L, Teale C, Cleary P, Wiuff C, Doumith M, Ellington MJ, Woodford N, Livermore DM (2019) Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study. Lancet Infect Dis 19(12):1325–1335. https://doi.org/10.1016/S1473-3099(19)30273-7

    Article  CAS  PubMed  Google Scholar 

  38. Ludden C, Decano AG, Jamrozy D, Pickard D, Morris D, Parkhill J, Peacock SJ, Cormican M, Downing T (2020) Genomic surveillance of Escherichia coli ST131 identifies local expansion and serial replacement of subclones. Microb Genom. https://doi.org/10.1099/mgen.0.000352

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pitout JDD, DeVinney R (2017) Escherichia coli ST131: a multidrug-resistant clone primed for global domination. F1000Research 6:195. https://doi.org/10.12688/f1000research.10609.1

  40. Johnson JR, Porter S, Thuras P, Castanheira M (2017) Epidemic emergence in the United States of Escherichia coli sequence type 131-H30 (ST131-H30), 2000 to 2009. https://doi.org/10.1128/AAC.00732-17

  41. Moreira da Silva RCR, de Oliveira Martins Junior P, Goncalves LF, de Paulo Martins V, de Melo ABF, Pitondo-Silva A, de Campos TA (2017) Ciprofloxacin resistance in uropathogenic Escherichia coli isolates causing community-acquired urinary infections in Brasília, Brazil. J Glob Antimicrob Resist 9:61–67. https://doi.org/10.1016/j.jgar.2017.01.009

    Article  PubMed  Google Scholar 

  42. Aizawa J, Neuwirt N, Barbato L, Neves PR, Leigue L, Padilha J, Pestana de Castro AF, Gregory L, Lincopan N (2014) Identification of fluoroquinolone-resistant extended-spectrum β-lactamase (CTX-M-8)-producing Escherichia coli ST224, ST2179 and ST2308 in buffalo (Bubalus bubalis). J Antimicrob Chemother 69(10):2866–2869. https://doi.org/10.1093/jac/dku218

    Article  CAS  PubMed  Google Scholar 

  43. Johnson JR, Johnston B, Kuskowski MA, Sokurenko EV, Tchesnokova V (2015) Intensity and mechanisms of fluoroquinolone resistance within the H30 and H30Rx subclones of escherichia coli sequence type 131 compared with other fluoroquinolone-resistant E. coli. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00673-15

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sorlozano A, Gutierrez J, Jimenez A, de Dios LJ, Martinez JL (2007) Contribution of a new mutation in parE to quinolone resistance in extended-spectrum-beta-lactamase-producing Escherichia coli isolates. J Clin Microbiol 45(8):2740–2742. https://doi.org/10.1128/JCM.01093-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deng Y, Bao X, Ji L, Chen L, Liu J, Miao J, Chen D, Bian H, Li Y, Yu G (2015) Resistance integrons: class 1, 2 and 3 integrons. Ann Clin Microbiol Antimicrob 14:45. https://doi.org/10.1186/s12941-015-0100-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang YW, Hu RM, Lin YT, Huang HH, Yang TC (2015) The contribution of class 1 integron to antimicrobial resistance in Stenotrophomonas maltophilia. Microb Drug Resist 21(1):90–96. https://doi.org/10.1089/mdr.2014.0072

    Article  CAS  PubMed  Google Scholar 

  47. Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2(2):123–140. https://doi.org/10.1038/nrmicro818

    Article  CAS  PubMed  Google Scholar 

  48. Mann R, Mediati DG, Duggin IG, Harry EJ, Bottomley AL (2017) Metabolic adaptations of uropathogenic e. coli in the urinary tract. Front Cell Infect Microbiol 7:241. https://doi.org/10.3389/fcimb.2017.00241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Johnson JR, Stell AL (2000) Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 181(1):261–272. https://doi.org/10.1086/315217

    Article  CAS  PubMed  Google Scholar 

  50. Schreiber HL 4th, Conover MS, Chou WC, Hibbing ME, Manson AL, Dodson KW, Hannan TJ, Roberts PL, Stapleton AE, Hooton TM, Livny J, Earl AM, Hultgren SJ (2017) Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections. Sci Transl Med 9(382):eaaf1283. https://doi.org/10.1126/scitranslmed.aaf1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Cefar for providing the antimicrobial drug disks used in this study.

Funding

This study is funded by the CAPES, CNPq, and FAPESP Project 2014/06779–2 and 2019/03049-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano G. Moreira.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: ANA LUCIA DA COSTA DARINI

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, P., Lustri, B.C., Castilho, I.G. et al. Genome profiling of fluoroquinolone-resistant uropathogenic Escherichia coli isolates from Brazil. Braz J Microbiol 52, 1067–1075 (2021). https://doi.org/10.1007/s42770-021-00513-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00513-3

Keywords

Navigation