Skip to main content
Log in

Plant-derived bioactive compounds produced by Streptomyces variabilis LCP18 associated with Litsea cubeba (Lour.) Pers as potential target to combat human pathogenic bacteria and human cancer cell lines

  • Biotechnology and Industrial Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

To date, endophytic actinomycetes have been well-documented as great producers of novel antibiotics and important pharmaceutical leads. The present study aimed to evaluate potent bioactivities of metabolites synthesized by the strain LCP18 residing in the Vietnamese medicinal plant Litsea cubeba (Lour.) Pers towards human pathogenic bacteria and human cancer cell lines. Endophytic actinomycete strain LCP18 showed considerable inhibition against seven bacterial pathogens and three human tumor cell lines and was identified as species Streptomyces variabilis. Strain S. variabilis LCP18 was phenotypically resistant to fosfomycin, trimethoprim-sulfamethoxazole, dalacin, cefoxitin, rifampicin, and fusidic acid and harbored the two antibiotic biosynthetic genes such as PKS-II and NRPS. Further purification and structural elucidation of metabolites from the LCP18 extract revealed five plant-derived bioactive compounds including isopcrunetin, genistein, daidzein, syringic acid, and daucosterol. Among those, isoprunetin, genistein, and daidzein exhibited antibacterial activity against Salmonella typhimurium ATCC 14,028 and methicillin-resistant Staphylococcus epidermidis ATCC 35,984 with the MIC values ranging from 16 to 128 µg/ml. These plant-derived compounds also exhibited cytotoxic effects against human lung cancer cell line A549 with IC50 values of less than 46 μM. These findings indicated that endophytic S. variabilis LCP18 can be an alternative producer of plant-derived compounds which significantly show potential applications in combating bacterial infections and inhibition against lung cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Das R, Romi W, Das R, Sharma HK, Thakur D (2018) Antimicrobial potentiality of actinobacteria isolated from two microbiologically unexplored forest ecosystems of Northeast India. BMC Microbiol 18(1):71. https://doi.org/10.1186/s12866-018-1215-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Govindasamy V, Franco CMM, Gupta VVSR (2013) Endophytic Actinobacteria: diversity and ecology. Advances in Endophytic Research. Springer India. https://doi.org/10.1007/978-81-322-1575-2_2

  3. Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58(1):1–26. https://doi.org/10.1038/ja.2005.1

    Article  CAS  Google Scholar 

  4. Christina A, Christapher V, Bhore SJ (2013) Endophytic bacteria as a source of novel antibiotics: an overview. Pharmacogn Rev 7(13):11. https://doi.org/10.4103/0973-7847.112833

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44(2):136–142. https://doi.org/10.1134/S0003683808020026

    Article  CAS  Google Scholar 

  6. Sadrati N, Daoud H, Zerroug A, Dahamna S, Bouharati S (2013) Screening of antimicrobial and antioxidant secondary metabolites from endophytic fungi isolated from wheat (Triticum durum). J Plant Prot Res 53(2):128–136. https://doi.org/10.2478/jppr-2013-0019

    Article  Google Scholar 

  7. Jose PA, Jha B (2016) New dimensions of research on actinomycetes: quest for next generation antibiotics. Front Microbiol 7:1295–1295. https://doi.org/10.3389/fmicb.2016.01295

    Article  PubMed  PubMed Central  Google Scholar 

  8. Salam N, Khieu T-N, Liu M-J, Vu T-T, Chu-Ky S, Quach N-T, Phi Q-T, Rao N, Prabhu M, Fontana A (2017) Endophytic actinobacteria associated with Dracaena cochinchinensis Lour.: isolation, diversity, and their cytotoxic activities. BioMed Res Intern 2017. https://doi.org/10.1155/2017/1308563

  9. Vu THN, Nguyen QH, Dinh TML, Quach NT, Khieu TN, Hoang H, Son C-K, Vu TT, Chu HH, Lee J (2020) Endophytic actinomycetes associated with Cinnamomum cassia Presl in Hoa Binh province, Vietnam: Distribution, antimicrobial activity and genetic features. J Gen Appl Microbiol 66:24–31. https://doi.org/10.2323/jgam.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  10. Subramani R, Aalbersberg W (2013) Culturable rare Actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biotechnol 97(21):9291–9321. https://doi.org/10.1007/s00253-013-5229-7

    Article  CAS  PubMed  Google Scholar 

  11. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477. https://doi.org/10.1021/np068054v

    Article  CAS  Google Scholar 

  12. Qin S, Li J, Chen H-H, Zhao G-Z, Zhu W-Y, Jiang C-L, Xu L-H, Li W-J (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna. China. Appl Environ Microbiol 75(19):6176–6186. https://doi.org/10.1128/AEM.01034-09

    Article  CAS  PubMed  Google Scholar 

  13. Kawahara T, Izumikawa M, Otoguro M, Yamamura H, Hayakawa M, Takagi M, Shin-ya K (2012) JBIR-94 and JBIR-125, antioxidative phenolic compounds from Streptomyces sp. R56–07. J Nat Prod 75(1):107–110. https://doi.org/10.1021/np200734p

    Article  CAS  PubMed  Google Scholar 

  14. Kekuda P, Onkarappa R, Jayanna N (2015) Characterization and antibacterial activity of a glycoside antibiotic from Streptomyces variabilis PO-178. STAR 3(4):116–121. https://doi.org/10.4314/star.v3i4.17

    Article  CAS  Google Scholar 

  15. Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP (2015) Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front Microbiol 6:273. https://doi.org/10.3389/fmicb.2015.00273

    Article  PubMed  PubMed Central  Google Scholar 

  16. McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM (2017) Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther 31(1):63–75. https://doi.org/10.1007/s10557-016-6711-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sasaki T, Igarashi Y, Saito N, Furumai T (2001) Cedarmycins A and B, new antimicrobial antibiotics from Streptomyces sp. TP-A0456. J Antibiot (Tokyo) 54(7):567–572. https://doi.org/10.7164/antibiotics.54.567

    Article  CAS  Google Scholar 

  18. Lu C, Shen Y (2007) A novel ansamycin, naphthomycin K from Streptomyces sp. J Antibiot 60(10):649–653. https://doi.org/10.1038/ja.2007.84

    Article  CAS  Google Scholar 

  19. Kong D-G, Zhao Y, Li G-H, Chen B-J, Wang X-N, Zhou H-L, Lou H-X, Ren D-M, Shen T (2015) The genus Litsea in traditional Chinese medicine: an ethnomedical, phytochemical and pharmacological review. J Ethnopharmacol 164:256–264. https://doi.org/10.1016/j.jep.2015.02.020

    Article  CAS  PubMed  Google Scholar 

  20. Wang H, Liu Y (2010) Chemical composition and antibacterial activity of essential oils from different parts of Litsea cubeba. Chem Biodivers 7(1):229–235. https://doi.org/10.1002/cbdv.200800349

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen QH, Nguyen HV, Vu TH-N, Chu-Ky S, Vu TT, Hoang H, Quach NT, Bui TL, Chu HH, Khieu TN, Sarter S, Li W-J, Phi Q-T (2019) Characterization of endophytic Streptomyces griseorubens MPT42 and assessment of antimicrobial synergistic interactions of its extract and essential oil from host plant Litsea cubeba. Antibiotics 8(4):197. https://doi.org/10.3390/antibiotics8040197

    Article  CAS  PubMed Central  Google Scholar 

  22. Jin L, Zhao Y, Song W, Duan L, Jiang S, Wang X, Zhao J, Xiang W (2019) Streptomyces inhibens sp. nov., a novel actinomycete isolated from rhizosphere soil of wheat (Triticum aestivum L.). Int J Syst Evol Microb 69(3):688–695. https://doi.org/10.1099/ijsem.0.003204

    Article  CAS  Google Scholar 

  23. Vu HT, Nguyen DT, Nguyen HQ, Chu HH, Chu SK, Chau MV, Phi QT (2018) Antimicrobial and cytotoxic properties of bioactive metabolites produced by Streptomyces cavourensis YBQ59 isolated from Cinnamomum cassia Prels in Yen Bai Province of Vietnam. Curr Microbiol 75(10):1247–1255. https://doi.org/10.1007/s00284-018-1517-x

    Article  CAS  PubMed  Google Scholar 

  24. CLSI (2017) Performance standards for antimicrobial susceptibility testing. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute 27th ed

  25. Singh V, Haque S, Kumari V, El-Enshasy HA, Mishra BN, Somvanshi P, Tripathi CKM (2019) Isolation, purification, and characterization of heparinase from Streptomyces variabilis MTCC 12266. Sci Rep 9(1):6482. https://doi.org/10.1038/s41598-019-42740-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jiang S, Li XL, Zhang L, Sun W, Dai S, Xie L, Liu Y, Lee KJ (2008) Culturable actinobacteria isolated from marine sponge Iotrochota sp. Mar Biol 153:945–952

    Article  CAS  Google Scholar 

  27. Kinkel LL, Schlatter DC, Xiao K, Baines AD (2014) Sympatric inhibition and niche differentiation suggest alternative coevolutionary trajectories among Streptomycetes. ISME J 8(2):249–256. https://doi.org/10.1038/ismej.2013.175

    Article  CAS  PubMed  Google Scholar 

  28. Dholakiya RN, Kumar R, Mishra A, Mody KH, Jha B (2017) Antibacterial and antioxidant activities of novel actinobacteria strain isolated from Gulf of Khambhat. Gujarat Front Microbiol 8:2420. https://doi.org/10.3389/fmicb.2017.02420

    Article  PubMed  Google Scholar 

  29. Tan LT-H, Ser H-L, Yin W-F, Chan K-G, Lee L-H, Goh B-H (2015) Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysia mangrove soil. Front Microbiol 6 (1316). https://doi.org/10.3389/fmicb.2015.01316

  30. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28(6):622–629. https://doi.org/10.1002/humu.20495

    Article  CAS  PubMed  Google Scholar 

  31. Goh BH, Chan CK, Kamarudin MN, Abdul Kadir H (2014) Swietenia macrophylla King induces mitochondrial-mediated apoptosis through p53 upregulation in HCT116 colorectal carcinoma cells. J Ethnopharmacol 153(2):375–385. https://doi.org/10.1016/j.jep.2014.02.036

    Article  CAS  PubMed  Google Scholar 

  32. Ndjateu FST, Tsafack RBN, Nganou BK, Awouafack MD, Wabo HK, Tene M, Tane P, Eloff JN (2014) Antimicrobial and antioxidant activities of extracts and ten compounds from three Cameroonian medicinal plants: Dissotis perkinsiae (Melastomaceae), Adenocarpus mannii (Fabaceae) and Barteria fistulosa (Passifloraceae). S Afr J Bot 91:37–42. https://doi.org/10.1016/j.sajb.2013.11.009

    Article  CAS  Google Scholar 

  33. Feng S, Hao J, Xu Z, Chen T, Qiu SX (2012) Polyprenylated isoflavanone and isoflavonoids from Ormosia henryi and their cytotoxicity and anti-oxidation activity. Fitoterapia 83(1):161–165. https://doi.org/10.1016/j.fitote.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  34. Sail V, Hadden MK (2012) Chapter eighteen-notch Pathway modulators as anticancer chemotherapeutics. In: Desai MC (ed) Annual reports in medicinal chemistry, vol 47. Academic Press, pp 267–280. https://doi.org/10.1016/B978-0-12-396492-2.00018-7

  35. Danciu C, Antal DS, Ardelean F, Chiş AR, Şoica C, Andrica F, Dehelean C (2017) New insights regarding the potential health benefits of isoflavones. Flavonoids-from biosynthesis to human health Rijeka, Croatia: Intech:257–286. https://doi.org/10.5772/67896

  36. Yang Y, Zang A, Jia Y, Shang Y, Zhang Z, Ge K, Zhang J, Fan W, Wang B (2016) Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling. Oncol Lett 12(3):2189–2193. https://doi.org/10.3892/ol.2016.4817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hong H, Landauer MR, Foriska MA, Ledney GD (2006) Antibacterial activity of the soy isoflavone genistein. J Basic Microbiol 46(4):329–335. https://doi.org/10.1002/jobm.200510073

    Article  CAS  PubMed  Google Scholar 

  38. Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Suresh Kumar C (2018) Syringic acid (SA)-a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother 108:547–557. https://doi.org/10.1016/j.biopha.2018.09.069

    Article  CAS  PubMed  Google Scholar 

  39. Ha SJ, Lee J, Park J, Kim YH, Lee NH, Kim YE, Song KM, Chang PS, Jeong CH, Jung SK (2018) Syringic acid prevents skin carcinogenesis via regulation of NoX and EGFR signaling. Biochem Pharmacol 154:435–445. https://doi.org/10.1016/j.bcp.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  40. Shi C, Sun Y, Zheng Z, Zhang X, Song K, Jia Z, Chen Y, Yang M, Liu X, Dong R, Xia X (2016) Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane. Food Chem 197(Pt A):100–106. https://doi.org/10.1016/j.foodchem.2015.10.100

    Article  CAS  PubMed  Google Scholar 

  41. Antibacterial activities of plant-derived compounds and essential oils toward Cronobacter sakazakii and Cronobacter malonaticus (2014). FOODBORNE PATHOG DIS 11 (10):795–797. https://doi.org/10.1089/fpd.2014.1737

  42. Campos FM, Couto JA, Figueiredo AR, Tóth IV, Rangel AO, Hogg TA (2009) Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Food Microbiol 135(2):144–151. https://doi.org/10.1016/j.ijfoodmicro.2009.07.031

    Article  CAS  PubMed  Google Scholar 

  43. Calderón-Oliver M, Ponce-Alquicira E (2018) Chapter 7 - Fruits: A source of polyphenols and health benefits. In: Grumezescu AM, Holban AM (eds) Natural and artificial flavoring agents and food dyes. Academic Press, pp 189–228. https://doi.org/10.1016/B978-0-12-811518-3.00007-7

  44. Choi EJ, Kim GH (2014) The antioxidant activity of daidzein metabolites, O-desmethylangolensin and equol, in HepG2 cells. Mol Med Rep 9(1):328–332. https://doi.org/10.3892/mmr.2013.1752

    Article  CAS  PubMed  Google Scholar 

  45. Liu N, Wang H, Liu M, Gu Q, Zheng W, Huang Y (2009) Streptomyces alni sp. nov., a daidzein-producing endophyte isolated from a root of Alnus nepalensis D. Don. Int J Syst Evol 59(2):254–258. https://doi.org/10.1099/ijs.0.65769-0

    Article  CAS  Google Scholar 

  46. Yang Y, Yang X, Zhang Y, Zhou H, Zhang J, Xu L, Ding Z (2013) A new daidzein derivative from endophytic Streptomyces sp. YIM 65408. Nat Prod Res 27(19):1727–1731. https://doi.org/10.1080/14786419.2012.750317

    Article  CAS  PubMed  Google Scholar 

  47. Gao P, Huang X, Liao T, Li G, Yu X, You Y, Huang Y (2019) Daucosterol induces autophagic-dependent apoptosis in prostate cancer via JNK activation. Biosci Trends 13(2):160–167. https://doi.org/10.5582/bst.2018.01293

    Article  CAS  PubMed  Google Scholar 

  48. Rajavel T, Mohankumar R, Archunan G, Ruckmani K, Devi KP (2017) Beta sitosterol and Daucosterol (phytosterols identified in Grewia tiliaefolia) perturbs cell cycle and induces apoptotic cell death in A549 cells. Sci Rep 7(1):3418–3418. https://doi.org/10.1038/s41598-017-03511-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful with the support of VAST – Culture Collection of Microorganisms, Institute of Biotechnology, Vietnam Academy of Science and Technology (http://www.vccm.vast.vn) and LMI DRISA, University of Science and Technology of Hanoi (USTH), VAST for implementing this project.

Funding

This study was financially supported by Vietnam Academy of Science and Technology (VAST) under grant number ĐLTE00.03/21–22.

Author information

Authors and Affiliations

Authors

Contributions

NTQ, QHN, THNV, TTHL, TTTT, TDN, VTN, and HHC: experimental procedures, data preparation, and interpretation. NTQ, QHN, and QTP: writing the manuscript. VTD, TTD, and XCN: reviewing the manuscript. NTQ, QTP, and THNV: manuscript preparation and funding acquisition. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Quyet Tien Phi.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Fernando R. Pavan

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quach, N.T., Nguyen, Q.H., Vu, T.H.N. et al. Plant-derived bioactive compounds produced by Streptomyces variabilis LCP18 associated with Litsea cubeba (Lour.) Pers as potential target to combat human pathogenic bacteria and human cancer cell lines. Braz J Microbiol 52, 1215–1224 (2021). https://doi.org/10.1007/s42770-021-00510-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00510-6

Keywords

Navigation