Skip to main content
Log in

Production strategies and biotechnological relevance of microbial lipases: a review

  • Biotechnology and Industrial Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Lipases are enzymes that catalyze the breakdown of lipids into long-chain fatty acids and glycerol in oil-water interface. In addition, they catalyze broad spectrum of bioconversion reactions including esterification, inter-esterification, among others in non-aqueous and micro-aqueous milieu. Lipases are universally produced from plants, animals, and microorganisms. However, lipases from microbial origin are mostly preferred owing to their lower production costs, ease of genetic manipulation etc. The secretion of these biocatalysts by microorganisms is influenced by nutritional and physicochemical parameters. Optimization of the bioprocess parameters enhanced lipase production. In addition, microbial lipases have gained intensified attention for a wide range of applications in food, detergent, and cosmetics industries as well as in environmental bioremediation. This review provides insights into strategies for production of microbial lipases for potential biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Patel N, Rai D, Shivam SS, Mishra U (2019) Lipases: sources, production, purification, and applications. Recent Patents Biotechnol 13(1):45–56

    Article  CAS  Google Scholar 

  2. Joseph B, Ramteke PW, Thomas G (2008) Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv 26(5):457–470

    Article  CAS  PubMed  Google Scholar 

  3. Hassan F, Shah AA, Hameed A (2006) Influence of culture conditions on lipase production by Bacillus sp. FH5. Ann Microbiol 56:247–252

    Article  Google Scholar 

  4. Borrelli GM, Trono D (2015) Recombinant lipases and phospholipases and their uses as biocatalysts for industrial applications. Int J Mol Sci 16(9):20774–20840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kanmani P, Aravind J, Kumaresan K (2015a) An insight into microbial lipases and their environmental facet. Int J Environ Sci Technol 12(3):1147–1162

    Article  CAS  Google Scholar 

  6. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64(6):763–781

    Article  CAS  PubMed  Google Scholar 

  7. de Pascale D, Cusano AM, Autore F, Parrilli E, Di Prisco G, Marino G, Tutino ML (2008) The cold-active Lip 1 lipase from the antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a member of a new bacterial lipolytic enzyme family. Extremophiles 12(3):311–323

    Article  CAS  PubMed  Google Scholar 

  8. Nardini M, Dijkstra BW (1999) α/β hydrolase fold enzyme: the family keeps growing. Curr Opin Struct Biol 9(6):732–737

    Article  CAS  PubMed  Google Scholar 

  9. Jaeger K-E, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351

    Article  CAS  PubMed  Google Scholar 

  10. Beisson F, Tiss A, Riviére C, Verger R (2000) Methods for lipase detection and assay: a critical review. Eur J Lipid Sci Technol 2:133–153

    Article  Google Scholar 

  11. Chandra P, Singh ER, Arora PK (2020) Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Factories 19:169

    Article  CAS  Google Scholar 

  12. Bharathi D, Rajalakshmi G (2019) Microbial lipases: an overview of screening, production and purification. Biocatal Agric Biotechnol 22:101368

    Article  Google Scholar 

  13. Gururaj P, Ramalingam S, Devi GN, Gautam P (2016) Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07. Braz J Microbiol 47(3):647–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Adetunji AI, Olaniran AO (2018a) Optimization of culture conditions for enhanced lipase production by an indigenous Bacillus aryabhattai SE3-PB using response surface methodology. Biotechnol Biotechnol Equip 32(6):1514–1526

    Article  CAS  Google Scholar 

  15. Lo C-F, Yu C-Y, Kuan I-C, Lee S-L (2012) Optimization of lipase production by Burkholderia sp. using response surface methodology. Int J Mol Sci 13(11):14889–14897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faisal PA, Hareesh ES, Priji P, Unni KN, Sajith S, Sreedevi S, Josh MS, Benjamin S (2014) Optimization of parameters for the production of lipase from Pseudomonas sp. BUP6 by solid state fermentation. Adv Enzyme Res2:125-133.

  17. Kalyani N, Saraswathy N (2014) Production of extracellular lipase by a new strain Staphylococcus aureus NK-LB37 isolated from oil-contaminated soil. Afr J Biotechnol 13 (28):2858-2866.

  18. Tripathi R, Singh J, Bharti RK, Thakur IS (2014) Isolation, purification and characterization of lipase from Microbacterium sp. and its application in biodiesel production. Energy Procedia 54:518–529

    Article  CAS  Google Scholar 

  19. Lopes MF, Leitão AL, Regalla M, Marques JJ, Carrondo MJ, Crespo MT (2002) Characterization of a highly thermostable extracellular lipase from Lactobacillus plantarum. Int J Food Microbiol 76(1-2):107–115

    Article  CAS  Google Scholar 

  20. Abdou AM (2003) Purification and partial characterization of psychrotrophic Serratia marcescens lipase. J Dairy Sci 86(1):127–132

    Article  CAS  PubMed  Google Scholar 

  21. Mahdi BA, Bhattacharya A, Gupta A (2012) Enhanced lipase production from Aeromonas sp. S1 using Sal deoiled seed cake as novel natural substrate for potential application in dairy wastewater treatment. J Chem Technol Biotechnol 87(3):418–426

    Article  CAS  Google Scholar 

  22. Sharma A, Bardhan D, Patel R (2009) Optimization of physical parameters for lipase production from Arthrobacter sp. BGCC#490. Indian J Biochem Biophys 46:178–183

    CAS  PubMed  Google Scholar 

  23. Hasan-Beikdashti M, Forootanfar H, Safiarian MS, Ameri A, Ghahremani MH, Khoshay MR, Faramarzi MA (2012) Optimization of culture conditions for production of lipase by a newly isolated bacterium Stenotrophomonas maltophilia. J Taiwan Inst Chem Eng 43(5):670–677

    Article  CAS  Google Scholar 

  24. Gumerov VM, Mardanov AV, Kolosov PM, Ravin NV (2012) Isolation and functional characterization of lipase from the thermophilic alkali-tolerant bacterium Thermosyntropha lipolytica. Appl Biochem Microbiol 48(4):338–343

    Article  CAS  Google Scholar 

  25. Teng Y, Xu Y, Wang D (2009) Changes in morphology of Rhizopus chinensis in submerged fermentation and their effect on production of mycelium-bound lipase. Bioprocess Biosyst Eng 32(3):397–405

    Article  CAS  PubMed  Google Scholar 

  26. Naqvi SH, Dahot MU, Ali A, Khan MY, Rafiq M (2011) Production and characterization of extracellular lipase secreted by Mucor geophillus. Afr J Biotechnol 10(84):19598–19606

    CAS  Google Scholar 

  27. Oliveira BH, Coradi GV, Attili-Angelis D, Scauri C, Luques AHPG, Barbosa AM, Dekker RFH, Neto PO, Lima VMG (2013) Comparison of lipase production on crambe oil and meal by Fusarium sp. (Gibberella fujikuroi complex). Eur J Lipid Sci Technol 115(12):1413–1425

    Article  CAS  Google Scholar 

  28. Loo JL, Khoramnia A, Lai OM, Long K, Ghazali HM (2014) Mycelium-bound lipase from a locally isolated strain of Geotrichum candidum. Molecules 19(6):8556–8570

    Article  PubMed  PubMed Central  Google Scholar 

  29. Colla LM, Primaz AL, Benedetti S, Loss RA, de Lima M, Reinehr CO, Bertolin TE, Costa JAV (2016) Surface response methodology for the optimization of lipase production under submerged fermentation by filamentous fungi. Braz J Microbiol 47(2):461–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Turati DFM, Morais Júnior WG, Terrasan CRF, Moreno-Perez S, Pessela BC, Fernandez-Lorente G, Guisan JM, Carmona EC (2017) Immobilization of lipase from Penicillium sp. Section Gracilenta (CBMAI 1583) on different hydrophobic supports: modulation of functional properties. Molecules 22(2):339

    Article  PubMed Central  Google Scholar 

  31. Liu Z, Chi Z, Wang L, Li J (2008) Production, purification and characterization of an extracellular lipase from Aureobasidium pullulans HN2.3 with potential application for the hydrolysis of edible oils. Biochem Eng J 40(3):445–451

    Article  CAS  Google Scholar 

  32. Potumarthi R, Subhakar C, Vanajakshi J, Jetty A (2008) Effect of aeration and agitation regimes on lipase production by newly isolated Rhodotoru lamucilaginosa MTCC 8737 in stirred tank reactor using molasses as sole production medium. Appl Biochem Biotechnol 151(2-3):700–710

    Article  CAS  PubMed  Google Scholar 

  33. Laachari F, Elabed S, Sayari A, Mohammed I, Harchali E, Boubendir A, Ibnsouda SK (2013) Biochemical characterization of a thermoactive and thermostable lipase from a newly isolated Trichosporon coremiiforme strain. Afr J Biotechnol 12(28):4503–4511

    Google Scholar 

  34. Oliveira ACD, Fernandes ML, Mariano AB (2014) Production and characterization of an extracellular lipase from Candida guilliermondii. Braz J Microbiol 45(4):1503–1511

    Article  CAS  PubMed  Google Scholar 

  35. Thirunavukarasu K, Purushothaman S, Gowthaman MK, Nakajima-Kambe T, Rose C, Kamini NR (2015) Utilization of fishmeal and fish oil for production of Cryptococcus sp. MTCC 5455 lipase and hydrolysis of polyurethane thereof. J Food Sci Technol 52(9):5772–5780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and application of lipases. Biotechnol Adv 19(8):627–662

    Article  CAS  PubMed  Google Scholar 

  37. Adetunji AI, Olaniran AO (2018c) Immobilization and characterization of lipase from an indigenous Bacillus aryabhattai SE3-PB isolated from lipid-rich wastewater. Prep Biochem Biotechnol 48(10): 898–905

  38. Bora L, Bora M (2012) Optimization of extracellular thermophilic highly alkaline lipase from thermophilic Bacillus sp. isolated from hot springs of Arunachal Pradesh India. Braz J Microbiol 43(1):30–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee LP, Karbul HM, Citartan M, Gopinath SCB, Lakshmipriya T, Tang T-H (2015) Lipase-secreting Bacillus species in an oil-contaminated habitat: promising strains to alleviate oil pollution. Biomed Res Int 2015:1–9

    Google Scholar 

  40. Daouadji KL, Reffas FZI, Benine ML, Abbouni B (2015) Optimization of various physical and chemical parameters for lipase production by Bacillus coagulans. Am Eurasian J Agric Environ Sci 15(5):962–968

    Google Scholar 

  41. Shariff FM, Abd Rahman RNZR, Basri M, Salleh AB (2011) A newly isolated thermostable lipase from Bacillus sp. Int J Mol Sci 12(5):2917–2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ghori MI, Iqbal MJ, Hameed A (2011) Characterization of a novel lipase from Bacillus sp. isolated from tannery wastes. Braz J Microbiol 42(1):22–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kumar S, Kikon K, Upadhyay A, Kanwar SS, Gupta R (2005) Production, purification, and characterization of lipase from thermophilic and alkaliphilic Bacillus coagulans BTS-3. Protein Expr Purif 41(1):38–44

    Article  CAS  PubMed  Google Scholar 

  44. Castro-Ochoa LD, Rodríguez-Gómez C, Valerio-Alfaro G, Ros RO (2005) Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzym Microb Technol 37(6):648–654

    Article  CAS  Google Scholar 

  45. Kumar R, Sharma A, Kumar A, Singh D (2012) Lipase from Bacillus pumilus RK31: production and some properties. World Appl Sci J16(7):940–948

    Google Scholar 

  46. Anbu P, Noh M-J, Kim D-H, Seo J-S, Hur B-K, Min KH (2011) Screening and optimization of extracellular lipases by Acinetobacter species isolated from oil-contaminated soil in South Korea. Afr J Biotechnol 10(20):4147–4156

    CAS  Google Scholar 

  47. Jagtap SC, Chopade BA (2015) Purification and characterization of lipase from Acinetobacter haemolyticus TA 106 isolated from human skin. Songklanakarin J Sci Technol 37(1):7–13

    CAS  Google Scholar 

  48. Sarac N, Ugur A (2015) A green alternative for oily wastewater treatment: lipase from Acinetobacter haemolyticus NS02-30. Desalin Water Treat 1(42):19750–19759

    Article  Google Scholar 

  49. Kumari A, Mahapatra P, Banerjee R (2009) Statistical optimization of culture conditions by response surface methodology for synthesis of lipase with Enterobacter aerogenes. Braz Arch Biol Technol 52(6):1349–1356

    Article  CAS  Google Scholar 

  50. Abdel-Fattah YF (2002) Optimization of thermostable lipase production from a thermophilic Geobacillus sp. using Box-Behnken experimental design. Biotechnol Lett 24(14):1217–1222

    Article  CAS  Google Scholar 

  51. Ebrahimpour A, Abd Rahman RNZR, Ch’ng DHE, Basri M, Salleh A (2008) A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM. BMC Biotechnol 8:96

    Article  PubMed  PubMed Central  Google Scholar 

  52. Abd Rahman RNZR, Leow TC, Salleh A, Basri M (2007) Geobacillus zalihae sp. nov., a thermophilic lipolytic bacterium isolated from palm oil mill effluent in Malaysia. BMC Microbiol 7:77

    Article  PubMed  Google Scholar 

  53. Boran R, Ugur A (2010) Partial purification and characterization of the organic solvent-tolerant lipase produced by Pseudomonas fluorescens RB02-3 isolated from milk. Prep Biochem Biotechnol 40(4):229–241

    Article  CAS  PubMed  Google Scholar 

  54. Mobarak-Qamsari E, Kasra-Kermanshahi R, Moosavi-nejad Z (2011) Isolation and identification of a novel, lipase-producing bacterium, Pseudomonas aeruginosa KM110. Iranian J Microbiol 3(2):92–98

    CAS  Google Scholar 

  55. Sreelatha B, Rao VK, Kumar RR, Girisham S, Reddy SM (2017) Culture conditions for the production of thermostable lipase by Thermomyces lanuginosus. Beni-Suef Univ J Basic Appl Sci 6(1):87–95

    Google Scholar 

  56. Das A, Shivakumar S, Bhatttacharya S, Shakya S, Swathi SS (2016) Purification and characterization of a surfactant-compatible lipase from Aspergillus tamarii JGIFO6 exhibiting energy-efficient removal of oil stains from polycotton fabric. 3. Biotech 6(2):131

    Google Scholar 

  57. Sethi BK, Nanda PK, Sahoo S (2016) Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10. Braz J Microbiol 47(1):143–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pacheco SMV, Cruz Júnior A, Morgado AF, FurigoJúnior A, Amadi OC, Guisán JM, Pessela B (2015) Isolation and screening of filamentous fungi producing extracellular lipase with potential in biodiesel production. Adv Enzyme Res 3:101–114

    Article  Google Scholar 

  59. Pereira MG, Vici AC, Facchini FDA, Tristão AP, Cursino-Santos JR, Sanches PR, Jorge JA, Polizeli MLTM (2014) Screening of filamentous fungi for lipase production: Hypocrea pseudokoningiia new producer with a high biotechnological potential. Biocatal Biotransform 32(1):74–83

    Article  CAS  Google Scholar 

  60. de Almeida AF, Dias KB, da Silva ACC, Terrasan CRF, Tauk-Tornisielo SM, Carmona EC (2016) Agroindustrial wastes as alternative for lipase production by Candida viswanathii under solid-state cultivation: purification, biochemical properties, and its potential for poultry fat hydrolysis. Enzyme Res 2016:1–15

    Article  Google Scholar 

  61. Nair S, Kumar P (2007) Molecular characterization of a lipase-producing Bacillus pumilus strain (NMSN-1d) utilizing colloidal water-dispersible polyurethane. World J Microbiol Biotechnol 23(10):1441–1449

    Article  CAS  Google Scholar 

  62. Singh M, Singh RS, Banerjee UC (2010) Enantioselective transesterification of racemic phenyl ethanol and its derivatives in organic solvent and ionic liquid using Pseudomonas aeruginosa lipase. Process Biochem 45(1):25–29

    Article  Google Scholar 

  63. Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27(6):782–798

    Article  CAS  PubMed  Google Scholar 

  64. Ertuğrul S, Dönmez G, Takaç S (2007) Isolation of lipase producing Bacillus sp. from olive mill wastewater and improving its enzyme activity. J Hazard Mater 149(3):720–724

    Article  PubMed  Google Scholar 

  65. Bora L, Kalita MC (2007) Production and optimization of thermostable lipase from a thermophilic Bacillus sp. LBN 4. Internet J Microbiol 4(1):1–6

    Google Scholar 

  66. Kim EK, Jang WH, Ko JH, Kang JS, Noh MJ, Yoo OJ (2001) Lipase and its modulator from Pseudomonas sp. strain KFCC 10818: proline-to-glutamine substitution at position 112 induces formation of enzymatically active lipase in the absence of the modulator. J Bacteriol 183(20):5937–5941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Emmanuel G, Esakkiraj P, Jebadhas A, Iyapparaj P, Palavesam A (2008) Investigation of lipase production by milk isolate Serratia rubidaea. Food Technol Biotechnol 46(1):60–65

    Google Scholar 

  68. Kashmiri MA, Ahmad A, Butt BW (2006) Production, purification and partial characterization of lipase from Trichoderma viride. Afr J Biotechnol 5(10):878–882

    CAS  Google Scholar 

  69. Rasmey AM, Aboseidah AA, Gaber S, Mahran F (2017) Characterization and optimization of lipase activity produced by Pseudomonas monteilli 2403-KY120354 isolated from ground beef. Afr J Biotechnol 16(2):96–105

    Article  CAS  Google Scholar 

  70. Alkan H, Baysal Z, Uyar F, Dogru M (2007) Production of lipase by a newly Bacillus coagulans under solid-state fermentation using melon wastes. Appl Biochem Biotechnol 136(2):183–192

    Article  CAS  PubMed  Google Scholar 

  71. Melani NB, Tambourgi EB, Silveira E (2019) Lipases: from production to applications. Sep Purif Rev 49(2):143–158

    Article  Google Scholar 

  72. Martínez-Corona R, Banderas-Martínez FJ, Pérez-Castillo JN, Cortés-Penagos C, González-Hernández JC (2020) Avocado oil as an inducer of the extracellular lipase activity of Kluyveromyces marxianus L-2029. Food Sci Technol 40:121–129

    Article  Google Scholar 

  73. Niyonzima FN, More SS, Muddapur U (2013) Optimization of fermentation culture conditions for alkaline lipase production by Bacillus flexus XJU-1.Curr. Trends Biotechnol Pharm 7(3):793–803

    CAS  Google Scholar 

  74. Khoramnia A, Ebrahimpour A, Beh BK, Lai OM (2011) Production of a solvent, detergent, and thermotolerant lipase by a newly isolated Acinetobacter sp. in submerged and solid-state fermentations. J Biomed Biotechnol 2011:1–12

    Article  Google Scholar 

  75. Nerurkar M, Manasi J, Sujata P, Ravindra A (2013) Application of lipase from marine bacteria Bacillus sonorensis as an additive in detergent formulation. J Surfactant Deterg 16(3):435–443

    Article  CAS  Google Scholar 

  76. Chauhan M, Chauhan RS, Garlapati VK (2013) Evaluation of a new lipase from Staphylococcus sp. for detergent additive capability. Biomed Res Int 2013:1–6

    Article  Google Scholar 

  77. Gulati R, Isar J, Kumar V, Prasad AK, Parmar VS, Saxena RK (2005) Production of a novel alkaline lipase by Fusarium globulosum using neem oil, and its applications. Pure Appl Chem 77(1):251–262

    Article  CAS  Google Scholar 

  78. Ghanem EH, Al-Sayed HA, Saleh KM (2000) An alkalophilic thermostable lipase produced by a new isolated of Bacillus alcalophilus.World. J Microbiol Biotechnol 16(5):459–464

    Article  CAS  Google Scholar 

  79. Rashid N, Shimada Y, Ezaki S, Atomi H, Imanaka T (2001) Low temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Appl Environ Microbiol 67(9):4064–4069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gunalakshmi B, Sahu M, Sivakumar K, Thangaradjou T, Sudha S, Kanan L (2008) Investigation on lipase producing actinomycete stain LE-1, isolated from shrimp pond. Res J Microbiol 3:73–81

    Article  CAS  Google Scholar 

  81. Thirunavukarasu K, Edwinoliver NG, Anbarasan S, Gowthaman MK, Iefuji H, Kamini NR (2008) Removal of triglyceride soil from fabrics by a novel lipase from Cryptococcus sp. S-2. Process Biochem 43(7):701–706

    Article  CAS  Google Scholar 

  82. Kumar SS, Kumar L, Sahai V, Gupta R (2009) A thiol-activated lipase from Trichosporon asahii MSR 54: detergent compatibility and presoak formulation for oil removal from soiled cloth at ambient temperature. J Ind Microbiol Biotechnol 26(3):427–432

    Article  Google Scholar 

  83. Wang J-Y, Ma C-L, Bao Y-M, Xu P-S (2012) Lipase entrapment in protamine-induced bio-zirconia particles: characterization and application to the resolution of (R, S)-1-phenylethanol. Enzym Microb Technol 51(1):40–46

    Article  CAS  Google Scholar 

  84. Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6:141–158

    CAS  Google Scholar 

  85. Romdhane IB, Fendri A, Gargouri Y, Gargouri A, Belghith HA (2010) novel thermoactive and alkaline lipase from Talaromyces thermophilus fungus for use in laundry detergents. Biochem Eng J 53(1):112–120

    Article  Google Scholar 

  86. Ilesanmi OI, Adekunle AE, Omolaiye JA, Olorode EM, Ogunkanmi AL (2020) Isolation, optimization and molecular characterization of lipase producing bacteria from contaminated soil. Sci Afr 8:e00279

    Google Scholar 

  87. Cherif S, Mnif S, Hadrich F, Abdelkafi S, Sayadi S (2011) A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids Health Dis 10:221–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang X, Yu X, Xu Y (2009) Homologous expression, purification and characterization of a novel high-alkaline and thermal stable lipase from Burkholderia cepacia ATCC 25416. Enzym Microb Technol 45(2):94–102

    Article  CAS  Google Scholar 

  89. Wang H, Shao J, Wei YJ, Zhang J, Qi W (2011) A novel low temperature alkaline lipase from Acinetobacter johnsonii LP28 suitable for detergent formulation. Food Technol Biotechnol 49(1):96–102

    CAS  Google Scholar 

  90. Lailaja VP, Chandrasekaran M (2013) Detergent compatible alkaline lipase produced by marine Bacillus smithii BTMS11.World. J Microbiol Biotechnol 29(8):1349–1360

    Article  CAS  Google Scholar 

  91. Rathi P, Saxena RK, Gupta R (2001) A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem 37(2):187–192

    Article  CAS  Google Scholar 

  92. Bayoumi RA, El-louboudey SS, Sidkey NM, Abd-El-Rahman MA (2007) Production, purification and characterization of thermos-alkalophilic lipase for application in bio-detergent industry. J Appl Sci Res 3(12):1752–1765

    CAS  Google Scholar 

  93. Brozzoli,V, Crognale S, Sampedro I, Federici F, D’Annibale A, Petruccioli M (2009) Assessment of olive-mill wastewater as a growth medium for lipase production by Candida cylindracea in bench-top reactor. Bioresour Technol 100 (13):3395-3402.

  94. Ghosh PK, Saxena RK, Gupta R, Yadav RP, Davidson S (1996) Microbial lipases: production and applications. Sci Prog 79:119–157

    CAS  PubMed  Google Scholar 

  95. Niyonzima FN, More SS (2015) Microbial detergent compatible lipases. J Sci Ind Res 74:105–113

    CAS  Google Scholar 

  96. Sharma R, Soni SK, Vohra RM, Jolly RS, Gupta LK, Gupta JK (2002) Production of extracellular alkaline lipase from a Bacillus sp. RSJ1 and its application in ester hydrolysis. Indian J Microbiol 42:49–54

    Google Scholar 

  97. El-Batal AI, Farrag AA, Elsayed MA, El-Khawaga AM (2016) Effect of environmental and nutritional parameters on the extracellular lipase production by Aspergillus niger. Int Lett Nat Sci 60:18–29

    Google Scholar 

  98. Bharathi D, Rajalakshmi G, Komathi S (2019) Optimization and production of lipase enzyme from bacterial strains isolated from petrol spill soil. J King Saud Univ --Sci 31:898–901

    Article  Google Scholar 

  99. Zheng C (2018) Growth characteristics and enzyme production optimization of lipase producing strain. IOP Conf Ser: Earth Environ Sci 108:042087

    Article  Google Scholar 

  100. Taskin M, Ucar MH, Unver Y, Kara AA, Ozdemir M, Ortucu S (2016) Lipase production with free and immobilized cells of cold-adapted yeast Rhodotorula glutinis HL25. Biocatal Agric Biotechnol 8:97–103

    Article  Google Scholar 

  101. Furini G, Berger JS, Campos JAM, van der Sand ST, Germani JC (2018) Production of lipolytic enzymes by bacteria isolated from biological effluent systems. Ann Braz Acad Sci 90:2955–2965

    Article  CAS  Google Scholar 

  102. Salwoom L, Abd Rahman RNZR, Salleh AB, Shariff FM, Convey P, Pearce D, Ali MSM (2019) Isolation, characterization, and lipase production of a cold-adapted bacterial strain Pseudomonas sp. LSK 25 isolated from Signy Island, Antarctica. Molecules 24:715

    Article  CAS  PubMed Central  Google Scholar 

  103. Kanwar L, Gogoi BK, Goswami P (2002) Production of a Pseudomonas lipase in n-alkane substrate and its isolation using an improved ammonium sulfate precipitation technique. Bioresour Technol 84:207–211

    Article  CAS  PubMed  Google Scholar 

  104. Mazhar H, Abbas N, Ali S, Sohai LA, Hussain Z, Ali SS (2017) Optimized production of lipase from Bacillus subtilis PCSIRNL-39. Afr J Biotechnol 16:1106–1115

    Article  CAS  Google Scholar 

  105. Geoffry K, Achur RN (2018) Screening and production of lipase from fungal organisms. Biocatal Agric Biotechnol 14:241–253

    Article  Google Scholar 

  106. Adetunji AI, Olaniran AO (2020) Statistical modeling and optimization of protease production by an autochtonous Bacillus aryabhattai Ab15-ES: a response surface methodology approach. Biocatal Agric Biotechnol 24:101528

    Article  Google Scholar 

  107. Puri S, Beg QK, Gupta R (2002) Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr Microbiol 44:286–290

    Article  CAS  PubMed  Google Scholar 

  108. Bas D, Boyaci IH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78(3):836–845

    Article  CAS  Google Scholar 

  109. Papagora C, Roukas T, Kotzekidou P (2013) Optimization of extracellular lipase production by Debaryomyces hansenii isolates from dry-salted olives using response surface methodology. Food Bioprod Process 91(4):413–420

    Article  CAS  Google Scholar 

  110. Yang F, Long L, Sun X, Wu H, Li T, Xiang W (2014) Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Mar Drugs 12(3):1245–1257

    Article  PubMed  PubMed Central  Google Scholar 

  111. Rathi P, Goswami VK, Sahai V, Gupta R (2002) Statistical medium optimization and production of a hyperthermostable lipase from Burkholderia cepacia in a bioreactor. J Appl Microbiol 93(6):930–936

    Article  CAS  PubMed  Google Scholar 

  112. Khoramnia A, Lai OM, Ebrahimpour A, Tanduba CJ, Voon TS, Mukhlis S (2010) Thermostable lipase from a newly isolated Staphylococcus xylosus strain; process optimization and characterization using RSM and ANN. Electron J Biotechnol 13(5):15–16

    Article  Google Scholar 

  113. Samaei-Nouroozi A, Rezaei S, Khoshnevis N, Doosti M, Hajihoseini R, Khoshayand MR, Faramarzi MA (2015) Medium-based optimization of an organic solvent-tolerant extracellular lipase from the isolated halophilic Alkalibacillus salilacus. Extremophiles 19(5):933–947

    Article  CAS  PubMed  Google Scholar 

  114. Kai W, Peisheng Y (2016) Optimization of lipase production from a novel strain Thalassospira permensis M35-15 using response surface methodology. Bioengineered 7(5):298–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ruchi G, Anshu G, Khare SK (2008) Lipase from solvent tolerant Pseudomonas aeruginosa strain: production optimization by response surface methodology and application. Bioresour Technol 99(11):4796–4802

    Article  CAS  PubMed  Google Scholar 

  116. Jia J, Yang X, Wu Z, Zhang Q, Lin Z, Guo H, Lin CSK, Wang J, Wang Y (2015) Optimization of fermentation medium for extracellular lipase production from Aspergillus niger using response surface methodology. Biomed Res Int 2015:1–8

    Google Scholar 

  117. Kanmani P, Karthik S, Aravind J, Kumaresan K (2013) The use of response surface methodology as a statistical tool for media optimization in lipase production from the dairy effluent isolate Fusarium solani. ISRN Biotechnol 2013:1–8

    Article  Google Scholar 

  118. Facchini FDA, Vici AC, Pereira MG, Jorge JA, Polizeli MLTM (2015) Enhanced lipase production of Fusarium verticillioides by using response surface methodology and wastewater pretreatment application. J Biochem Technol 6(3):996–1002

    Google Scholar 

  119. Rajendran A, Thangavelu V (2007) Optimization of medium composition for lipase production by Candida rugosa NCIM 3462 using response surface methodology. Can J Microbiol 53(5):643–655

    Article  CAS  PubMed  Google Scholar 

  120. de Menezes LHS, Carneiro LL, Tavares IMC, Santos PH, das Chagas TP, Mendes AA, da Silva EGP, Franco M, de Oliveira JR (2020) Artificial neural network hybridized with genetic algorithm for optimization of lipase production from Penicillium roqueforti ATCC 10110 in solid-state fermentation. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2020.101885, 31, 101885.

  121. Saxena R, Singh R (2010) Statistical optimization of conditions for protease production from Bacillus sp. Acta Biol Szeged 54:135–141

    Google Scholar 

  122. Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi CKM (2017) Strategies for fermentation medium optimization: an in-depth review. Front Microbiol 7:2087

    Article  PubMed  PubMed Central  Google Scholar 

  123. Adinarayana K, Ellaiah P (2002) Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. J. Pharm Pharm Sci 5:272–278

    CAS  Google Scholar 

  124. Singh V, Tripathi C (2008) Production and statistical optimization of a novel olivanic acid by Streptomyces olivaceus MTCC 6820. Process Biochem 43:1313–1317

    Article  CAS  Google Scholar 

  125. Rajeswari P, Arul JP, Amiya R, Jebakumar SRD (2014) Characterization of saltern based Streptomyces sp. and statistical media optimization for its improved antibacterial activity. Front Microbiol 5:753

    PubMed  Google Scholar 

  126. Mehta A, Sharma R, Gupta R (2019) Statistical optimization by response surface methodology to enhance lipase production by Aspergillus fumigatus. Open Microbiol J 13:86–93

    Article  CAS  Google Scholar 

  127. Oskouie SFG, Tabandeh F, Yakhchali B, Eftekhar F (2008) Response surface optimization of medium composition for alkaline protease production by Bacillus clausii. Biochem Eng J 39:37–42

    Article  CAS  Google Scholar 

  128. Queiroga AC, Pintado ME, Malcata FX (2012) Use of response surface methodology to optimize protease synthesis by a novel strain of Bacillus sp. isolated from Portuguese sheep wool. J Appl Microbiol 113:36–43

    Article  CAS  PubMed  Google Scholar 

  129. Shabbiri K, Adnan A, Jamil S, Ahmad W, Noor B, Rafique HM (2012) Medium optimization of protease production by Brevibacterium lihens DSM 20158 using statistical approach. Braz J Microbiol 2012:1051–1061

    Article  Google Scholar 

  130. Li Y, Liu Z, Cui F, Liu Z, Zhao H (2007) Application of Plackett-Burman design and Doehlert design to evaluate nutritional requirements for xylanase production by Alternaria mali ND-16. Appl Microbiol Biotechnol 77:285–291

    Article  CAS  PubMed  Google Scholar 

  131. Priyanka P, Tan Y, Kinsella GK, Henehan GT, Ryan BJ (2019) Solvent stable microbial lipases: current understanding and biotechnological applications. Biotechnol Lett 41(2):203–220

    Article  CAS  PubMed  Google Scholar 

  132. Wang Y, Ma R, Li S (2018) An alkaline and surfactant-tolerant lipase from Trichoderma lentiforme ACCC30425 with high application potential in the detergent industry. AMB Express 8:95

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hasan F, Shah AA, Javed S, Hameed A (2010) Enzymes used in detergents: lipases. Afr J Biotechnol 9(31):4836–4844

    CAS  Google Scholar 

  134. Bacha AB, Al-Assaf A, Moubayed NM, Abid I (2018) Evaluation of a novel thermo-alkaline Staphylococcus aureus lipase for application in detergent formulations. Saud J Biol Sci 25(3):409–417

    Article  Google Scholar 

  135. Devi R, Nampoothiri KM, Sukumaran RK, Sindhu R, Arumugam M (2019) Lipase of Pseudomas guariconesis as an additive in laundry detergents and transesterification biocatalysts. J Basic Microbiol 60:112–125. https://doi.org/10.1002/jobm.201900326

  136. Andualema B, Gessesse A (2012) Microbial lipases and their industrial applications: review. Biotechnol 11:100–118

    Article  CAS  Google Scholar 

  137. Gupta R, Rathi P, Bradoo S (2003) Lipase mediated upgradation of dietary fats and oils. Crit Rev Food Sci Nutr 43(6):635–644

    Article  CAS  PubMed  Google Scholar 

  138. Raveedran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A (2018) Applications of microbial enzymes in food industry. Food Technol Biotechnol 56(1):16–30

    Google Scholar 

  139. Kazlauskas RJ, Bornscheur UT (1998) Biotransformations with lipases. In: Rehm HJ, Pihler G, Stadler A, Kelly PJW (eds) Biotechnology. VCH, New York, pp 37–192

  140. Guerrand D (2017) Lipases industrial applications: focus on food and agroindustries. OCL 24(4):D403

    Article  Google Scholar 

  141. Ansorge-Schumacher MB, Thum O (2013) Immobilized lipases in cosmetics industry. Chem Soc Rev 42(15):6475–6490

    Article  CAS  PubMed  Google Scholar 

  142. Lehtinen T, Efimova E, Santala S, Santala V (2018) Improved fatty aldehyde and wax ester production by overexpression of fatty acyl-CoA reductases. Microb Cell Factories 17(1):19

    Article  Google Scholar 

  143. Zasada M, Budzisz E (2019) Retinoids: active molecules influencing skin structure formation in cosmetic and dermatological treatments. Adv Dermatol Allergol 36(4):392–397

    Article  Google Scholar 

  144. Jaeger KE, Reetz MT (1998) Microbial lipases from versatile tools for biotechnology. Trends Biotechnol 16(9):396–403

    Article  CAS  PubMed  Google Scholar 

  145. Fakuda S, Hayashi S, Ochiai H, Iiizumi T, Nakamura K (1990) Improvers for deinking of wastepaper. Japanese Patent 2:229–290

    Google Scholar 

  146. Bajpai P (1999) Application of enzymes in paper and pulp industry. Biotechnol Prog 15(2):147–157

    Article  CAS  PubMed  Google Scholar 

  147. Demuner BJ, Pereira JN, Antunes A (2011) Technology prospecting on enzymes for the pulp and paper industry.J. Technol Manag Innov 6(3):148–158

    Article  Google Scholar 

  148. Adetunji AI, Olaniran AO (2018b) Treatment of lipid-rich wastewater using a mixture of free or immobilized bioemulsifier and hydrolytic enzymes from indigenous bacterial isolates. Desalin Water Treat 132:274–280

    Article  CAS  Google Scholar 

  149. Ferreira-Leitão VS, Cammarota MS, Aguieiras ECG, Vasconcelos de Sá LR, Fernandez-Lafuente R, Freire DMG (2017) The protagonism of biocatalysis in green chemistry and its environmental benefits. Catalysts 7(1):9

    Article  Google Scholar 

  150. Kanmani P, Kumaresan K, Aravind J (2015b) Pretreatment of coconut mill effluent using celite-immobilized hydrolytic enzyme preparation from Staphylococcus pasteuri and its impact in anaerobic digestion. Biotechnol Prog 31:1249–1258

    Article  CAS  PubMed  Google Scholar 

  151. Rosa DR, Cammarota MC, Freire DMG (2006) Production and utilization of a novel solid enzymatic preparation produced by Penicillium restrictum in activated sludge systems treating wastewater with high levels of oil and grease. Environ Eng Sci 23(5):814–823

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the National Research Foundation (NRF) of South Africa toward this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the NRF.

Author information

Authors and Affiliations

Authors

Contributions

AIA conceived and drafted the manuscript while AOO edited the manuscript.

Corresponding author

Correspondence to Adegoke Isiaka Adetunji.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Adalberto Pessoa

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adetunji, A.I., Olaniran, A.O. Production strategies and biotechnological relevance of microbial lipases: a review. Braz J Microbiol 52, 1257–1269 (2021). https://doi.org/10.1007/s42770-021-00503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00503-5

Keywords

Navigation