Skip to main content

Advertisement

Log in

Occurrence and diversity of viruses associated with cyanobacterial communities in a Brazilian freshwater reservoir

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

As part of the phytoplankton of marine and freshwater environments around the world, cyanobacteria interact with viruses (cyanophages) that affect their abundance and diversity. Investigations focusing on cyanophages co-occurring with freshwater cyanobacteria are scarce, particularly in Brazil. The aim of this study was to assess the diversity of cyanophages associated with a Microcystis-dominated cyanobacterial bloom in a tropical reservoir. Samples were processed as viral fractions of water and cellular fractions, and temporal fluctuations in the abundance of Ma-LMM01-type cyanophages and their Microcystis hosts were determined by qPCR. We applied shotgun metagenomics to obtain a wider characterization of the cyanophage community. During the study period, Microcystis gene copies were quantified in all cellular fractions, and the copy number of the Ma-LMM01 phage gene tended to increase with host abundance. Metagenomic analysis demonstrated that Caudovirales was the major viral order associated with the cyanophage families Myoviridae (34–88%), Podoviridae (3–42%), and Siphoviridae (6–23%). The metagenomic analysis results confirmed the presence of Microcystis cyanophages in both viral and cellular fractions and demonstrated a high relative abundance of picocyanobacteria-related viruses and Prochlorococcus (36–52%) and Synechococcus (37–50%) phages. For other main cyanobacterial genera, no related cyanophages were identified, which was probably due to the scarce representation of cyanophage sequences in databanks. Thus, the studied reservoir hosted a diverse cyanophage community with a remarkable contribution of phages related to picoplanktonic cyanobacteria. These results provide insights that motivate future sequencing efforts to assess cyanophage diversity and recover complete genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Sequences generated during the current study are available in the NCBI short read archive under BioProject PRJNA679033.

Code availability

Not applicable.

References

  1. Paerl HW, Otten TG (2013) Harmful cyanobacterial blooms: causes, consequences, and controls. Microb Ecol 65:995–1010. https://doi.org/10.1007/s00248-012-0159-y

    Article  CAS  PubMed  Google Scholar 

  2. Paerl HW (2018) Mitigating toxic planktonic cyanobacterial blooms in aquatic ecosystems facing increasing anthropogenic and climatic pressures. Toxins (Basel) 10(2):76. https://doi.org/10.3390/toxins10020076

    Article  CAS  Google Scholar 

  3. Van Wichelen J, Vanormelingen P, Codd GA, Vyverman W (2016) The common bloom-forming cyanobacterium Microcystis is prone to a wide array of microbial antagonists. Harmful Algae 55:97–111. https://doi.org/10.1016/j.hal.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  4. Dion MB, Oechslin F, Moineau S (2020) Phage diversity, genomics and phylogeny. Nat Rev Microbiol 18:125–138. https://doi.org/10.1038/s41579-019-0311-5

    Article  CAS  PubMed  Google Scholar 

  5. Warwick-Dugdale J, Buchholz HH, Allen MJ, Temperton B (2019) Host-hijacking and planktonic piracy: how phages command the microbial high seas. Virol J 16:15. https://doi.org/10.1186/s12985-019-1120-1

    Article  PubMed  PubMed Central  Google Scholar 

  6. Middelboe M, Jacquet S, Weinbauer M (2008) Viruses in freshwater ecosystems: an introduction to the exploration of viruses in new aquatic habitats. Freshw Biol 53:1069–1075. https://doi.org/10.1111/j.1365-2427.2008.02014.x

    Article  Google Scholar 

  7. Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, Rubin E, Ivanova NN, Kyrpides NC (2016) Uncovering Earth’s virome. Nature 536:425–430. https://doi.org/10.1038/nature19094

    Article  CAS  PubMed  Google Scholar 

  8. Gao EB, Huang Y, Ning D (2016) Metabolic genes within cyanophage genomes: implications for diversity and evolution. Genes 7:80. https://doi.org/10.3390/genes7100080

    Article  CAS  PubMed Central  Google Scholar 

  9. Wilhelm SW, Carberry MJ, Eldridge ML, Poorvin L, Saxton MA, Doblin MA (2006) Marine and freshwater cyanophages in a Laurentian Great Lake: evidence from infectivity assays and molecular analyses of g20 genes. Appl Environ Microbiol 72:4957–4963. https://doi.org/10.1128/AEM.00349-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Short CM, Suttle CA (2005) Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol 71:480–486. https://doi.org/10.1128/AEM.71.1.480-486.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Takashima Y, Yoshida T, Yoshida M (2007) Development and application of quantitative detection of cyanophages phylogenetically related to cyanophage Ma-LMM01 infecting Microcystis aeruginosa in fresh water. Microbes Environ 22(3):207–213. https://doi.org/10.1264/jsme2.22.207

    Article  Google Scholar 

  12. Kimura S, Yoshida T, Hosoda N, Honda T, Kuno S, Kamiji R, Hashimoto R, Sako Y (2012) Diurnal infection patterns and impact of Microcystis cyanophages in a Japanese pond. Appl Environ Microbiol 78:5805–5811. https://doi.org/10.1128/AEM.00571-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kimura S, Sako Y, Yoshida T (2013) Rapid Microcystis cyanophage gene diversification revealed by long- and short-term genetic analyses of the tail sheath gene in a natural pond. Appl Environ Microbiol 79:2789–2795. https://doi.org/10.1128/AEM.03751-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kimura-Sakai S, Sako Y, Yoshida T (2015) Development of a real-time PCR assay for the quantification of Ma-LMM01-type Microcystis cyanophages in a natural pond. Lett Appl Microbiol 60:400–408. https://doi.org/10.1111/lam.12387

    Article  CAS  PubMed  Google Scholar 

  15. Yoshida M, Yoshida T, Kashima A, Takashima Y, Hosoda N, Nagasaki K, Hiroishi S (2008) Ecological dynamics of the toxic bloom-forming cyanobacterium Microcystis aeruginosa and its cyanophages in freshwater. Appl Environ Microbiol 74:3269–3273. https://doi.org/10.1128/AEM.02240-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yoshida M, Yoshida T, Yoshida-Takashima Y, Kashima A, Hiroishi S (2010) Real-time PCR detection of host-mediated cyanophage gene transcripts during infection of a natural Microcystis aeruginosa population. Microbes Environ 25:211–215. https://doi.org/10.1264/jsme2.me10117

    Article  PubMed  Google Scholar 

  17. Mankiewicz-Boczek J, Jaskulska A, Pawełczyk J, Gągała I, Serwecińska L, Dziadek J (2016) Cyanophages infection of Microcystis bloom in lowland dam reservoir of Sulejów, Poland. Microb Ecol 71:315–325. https://doi.org/10.1007/s00248-015-0677-5

    Article  CAS  PubMed  Google Scholar 

  18. Harke MJ, Steffen MM, Gobler CJ, Otten TG, Wilhelm SW, Wood SA, Paerl HW (2016) A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae 54:4–20. https://doi.org/10.1016/j.hal.2015.12.007

    Article  PubMed  Google Scholar 

  19. Roux S, Enault F, Robin A, Ravet V, Personnic S, Theil S, Colombet J, Sime-Ngando T, Debroas D (2012) Assessing the diversity and specificity of two freshwater viral communities through metagenomics. PLoS One 7:e33641. https://doi.org/10.1371/journal.pone.0033641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mohiuddin M, Schellhorn H (2015) Spatial and temporal dynamics of virus occurrence in two freshwater lakes captured through metagenomic analysis. Front Microbiol 6:960. https://doi.org/10.3389/fmicb.2015.00960

    Article  PubMed  PubMed Central  Google Scholar 

  21. Skvortsov T, de Leeuwe C, Quinn JP, McGrath JW, Allen CCR, McElarney Y, Watson C, Arkhipova K, Lavigne R, Kulakov LA (2016) Metagenomic characterisation of the viral community of Lough Neagh, the largest freshwater lake in Ireland. PLoS One 11:e0150361. https://doi.org/10.1371/journal.pone.0150361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moon K, Kim S, Kang I, Cho JC (2020) Viral metagenomes of Lake Soyang, the largest freshwater lake in South Korea. Sci Data 7:349. https://doi.org/10.1038/s41597-020-00695-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Soares MCS, Rocha MIA, Marinho MM (2009) Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects. Aquat Microb Ecol 57(2):137–149. https://doi.org/10.3354/ame01336

    Article  Google Scholar 

  24. Soares MCS, Huszar VLM, Miranda MN, Mello MM (2013) Cyanobacterial dominance in Brazil: distribution and environmental preferences. Hydrobiologia 717:1–12. https://doi.org/10.1007/s10750-013-1562-1

    Article  CAS  Google Scholar 

  25. Guedes IA, da Costa Leite DM, Manhães LA, Bisch PM, Azevedo SM, Pacheco ABF (2014) Fluctuations in microcystin concentrations, potentially toxic Microcystis and genotype diversity in a cyanobacterial community from a tropical reservoir. Harmful Algae 39:303–309. https://doi.org/10.1016/j.hal.2014.09.001

    Article  CAS  Google Scholar 

  26. Rangel LM, Soares MCS, Paiva R, Silva LHS (2016) Morphology-based functional groups as effective indicators of phytoplankton dynamics in a tropical cyanobacteria-dominated transitional river–reservoir system. Ecol Indic 64:217–227. https://doi.org/10.1016/j.ecolind.2015.12.041

    Article  Google Scholar 

  27. do Nascimento Moura A, Aragao-Tavares NK, Amorim CA (2018) Cyanobacterial blooms in freshwater bodies from a semiarid region, Northeast Brazil: A review. J Limnol 77:179–188. https://doi.org/10.4081/jlimnol.2017.1646

    Article  Google Scholar 

  28. Guedes IA, Rachid CT, Rangel LM, Silva LH, Bisch PM, Azevedo SM, Pacheco AB (2018) Close link between harmful cyanobacterial dominance and associated bacterioplankton in a tropical eutrophic reservoir. Front Microbiol 9:424. https://doi.org/10.3389/fmicb.2018.00424

    Article  PubMed  PubMed Central  Google Scholar 

  29. Barros MU, Wilson AE, Leitão JI, Pereira SP, Buley RP, Fernandez-Figueroa EG, Capelo-Neto J (2019) Environmental factors associated with toxic cyanobacterial blooms across 20 drinking water reservoirs in a semi-arid region of Brazil. Harmful Algae 86:128–137. https://doi.org/10.1016/j.hal.2019.05.006

    Article  CAS  PubMed  Google Scholar 

  30. Katayama H, Shimasaki A, Ohgaki S (2002) Development of a virus concentration method and its application to detection of enterovirus and Norwalk virus from coastal seawater. Appl Environ Microbiol 68:1033-1039. 10.1128/AEM.68.3.1033–1039.2002, DOI: https://doi.org/10.1128/AEM.68.3.1033-1039.2002

  31. Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F (2009) Laboratory procedures to generate viral metagenomes. Nat Protoc 4:470–483. https://doi.org/10.1038/nprot.2009.10

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, Nagasaki K (2006) Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 72:1239–1247. https://doi.org/10.1128/AEM.72.2.1239-1247.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Martins A, Moreira C, Vale M, Freitas M, Regueiras A, Antunes A, Vasconcelos V (2011) Seasonal dynamics of Microcystis spp. and their toxigenicity as assessed by qPCR in a temperate reservoir. Marine Drugs 9:1715–1730. https://doi.org/10.3390/md9101715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

    Google Scholar 

  35. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meyer F, Paarmann D, D’Souza M et al (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. https://doi.org/10.1186/1471-2105-9-386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wilke A, Harrison T, Wilkening J, Field D, Glass EM, Kyrpides N, Mavrommatis K, Meyer F (2012) The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC Bioinformatics 13:141. https://doi.org/10.1186/1471-2105-13-141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. O’Leary NA, Wright MW, Brister JR et al (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44:D733–D745. https://doi.org/10.1093/nar/gkv1189

    Article  CAS  PubMed  Google Scholar 

  39. Schoch CL, Ciufo S, Domrachev M, et al (2020) NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford):baaa062

  40. Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. https://doi.org/10.1093/bioinformatics/btu494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rivals I, Personnaz L, Taing L, Potier M-C (2007) Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 23:401–407. https://doi.org/10.1093/bioinformatics/btl633

    Article  CAS  PubMed  Google Scholar 

  42. Newcombe RG (1998) Interval estimation for the difference between independent proportions: comparison of eleven methods. Stat Med 17:873–890

    Article  CAS  PubMed  Google Scholar 

  43. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  44. Alexyuk MS, Turmagambetova AS, Alexyuk PG, Bogoyavlenskiy AP, Berezin VE (2017) Comparative study of viromes from freshwater samples of the Ile-Balkhash region of Kazakhstan captured through metagenomic analysis. Virus Dis 28:18–25. https://doi.org/10.1007/s13337-016-0353-5

    Article  Google Scholar 

  45. Chopyk J, Allard S, Nasko DJ, Bui A, Mongodin EF, Sapkota AR (2018) Agricultural freshwater pond supports diverse and dynamic bacterial and viral populations. Front Microbiol 9:792. https://doi.org/10.3389/fmicb.2018.00792

    Article  PubMed  PubMed Central  Google Scholar 

  46. Williamson SJ, Allen LZ, Lorenzi HA, Fadrosh DW, Brami D, Thiagarajan M, McCrow JP, Tovchigrechko A, Yooseph S, Venter JC (2012) Metagenomic exploration of viruses throughout the Indian Ocean. PLoS One 7:e42047. https://doi.org/10.1371/journal.pone.0042047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stough JMA, Tang X, Krausfeldt LE, Steffen MM, Gao G, Boyer GL, Wilhelm SW (2017) Molecular prediction of lytic vs lysogenic states for Microcystis phage: metatranscriptomic evidence of lysogeny during large bloom events. PLoS One 12:e0184146. https://doi.org/10.1371/journal.pone.0184146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Callieri C (2017) Synechococcus plasticity under environmental changes. FEMS Microbiol Lett 364:fnx229. https://doi.org/10.1093/femsle/fnx229

    Article  CAS  Google Scholar 

  49. Kupczok A, Dagan T (2019) Rates of molecular evolution in a marine Synechococcus phage lineage. Viruses 11:720. https://doi.org/10.3390/v11080720

    Article  CAS  PubMed Central  Google Scholar 

  50. Suttle CA (1994) The significance of viruses to mortality in aquatic microbial communities. Microb Ecol 28:237–243. https://doi.org/10.1007/BF00166813

    Article  CAS  PubMed  Google Scholar 

  51. Ortmann AC, Lawrence JE, Suttle CA (2002) Lysogeny and lytic viral production during a bloom of the cyanobacterium Synechococcus spp. Microb Ecol 43:225–231. https://doi.org/10.1007/s00248-001-1058-9

    Article  CAS  PubMed  Google Scholar 

  52. Dreher TW, Brown N, Bozarth CS, Schwartz AD, Riscoe E, Thrash C, Bennett SE, Tzeng SC, Maier CS (2011) A freshwater cyanophage whose genome indicates close relationships to photosynthetic marine cyanomyophages. Environ Microbiol 13:1858–1874. https://doi.org/10.1111/j.1462-2920.2011.02502.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Biller S, Berube P, Lindell D et al (2015) Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol 13:13–27. https://doi.org/10.1038/nrmicro3378

    Article  CAS  PubMed  Google Scholar 

  54. Jing R, Liu J, Yu Z, Liu X, Wang G (2014) Phylogenetic distribution of the capsid assembly protein gene (g20) of cyanophages in paddy floodwaters in Northeast China. PLoS One 9:e88634. https://doi.org/10.1371/journal.pone.0088634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sullivan MB, Lindell D, Lee JA, Thompson LR, Bielawski JP, Chisholm SW (2006) Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol 4:e234. https://doi.org/10.1371/journal.pbio.0040234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhaxybayeva O, Doolittle WF, Papke RT, Gogarten JP (2009) Intertwined evolutionary histories of marine Synechococcus and Prochlorococcus marinus. Genome Biol Evol 1:325–339. https://doi.org/10.1093/gbe/evp032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kraft K, Alum A, Abbaszadegan M (2020) Environmental algal phage isolates and their impact on production potential for food and biofuel applications. J Appl Microbiol 128:182–190. https://doi.org/10.1111/jam.14487

    Article  CAS  PubMed  Google Scholar 

  58. Ou T, Liao X-Y, Gao X-C, Xu XD, Zhang QY (2015) Unraveling the genome structure of cyanobacterial podovirus A-4L with long direct terminal repeats. Virus Res 203:4–9. https://doi.org/10.1016/j.virusres.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  59. Chénard C, Wirth JF, Suttle CA (2016) Viruses infecting a freshwater filamentous cyanobacterium (Nostoc sp.) encode a functional CRISPR array and a proteobacterial DNA polymerase B. mBio 7:e00667–e00616. https://doi.org/10.1128/mBio.00667-16

    Article  PubMed  PubMed Central  Google Scholar 

  60. Morimoto D, Šulčius S, Yoshida T (2020) Viruses of freshwater bloom-forming cyanobacteria: genomic features, infection strategies and coexistence with the host. Environ Microbiol Rep 12:486–502. https://doi.org/10.1111/1758-2229.12872

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Thamires de Oliveira Lourenço for performing qPCR experiments and Eduardo Camacho for technical support.

Funding

This work was supported by the Carlos Chagas Filho Research Support Foundation of Rio de Janeiro State (projects FAPERJ 19/2011, FAPERJ 32/2013, and E-26/010.001638/2014). LOS and IAG were supported by fellowships from the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design, or development. LOS analyzed bioinformatics data; IAG designed the study and collected samples; SMFOA conceived the study, analyzed data, and revised it critically; ABFP conceived and designed the study, performed research, analyzed data, and wrote the paper. We confirm that the manuscript has been read and approved by all named authors. We confirm that the order of authors listed in the manuscript has been approved by all named authors.

Corresponding author

Correspondence to Ana Beatriz Furlanetto Pacheco.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be considered a potential conflict of interest.

Additional information

Responsible Editor: Ernani Pinto

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Santos, L., Guedes, I.A., Azevedo, S.M.F.d. et al. Occurrence and diversity of viruses associated with cyanobacterial communities in a Brazilian freshwater reservoir. Braz J Microbiol 52, 773–785 (2021). https://doi.org/10.1007/s42770-021-00473-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00473-8

Keywords

Navigation