Skip to main content
Log in

Characterization of the relationship between polar and lateral flagellar genes in clinical Aeromonas dhakensis: phenotypic, genetic and biochemical analyses

  • Bacterial, Fungal and Virus Molecular Biology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Flagellar-mediated motility is a crucial virulence factor in many bacterial species. A dual flagellar system has been described in aeromonads; however, there is no flagella-related study in the emergent human pathogen Aeromonas dhakensis. Using 46 clinical A. dhakensis, phenotypic motility, genotypic characteristics (flagellar genes and sequence types), biochemical properties and their relationship were investigated in this study. All 46 strains showed swimming motility at 30 °C in 0.3% Bacto agar and carried the most prevalent 6 polar flagellar genes cheA, flgE, flgG, flgH, flgL, and flgN. On the contrary, only 18 strains (39%) demonstrated swarming motility on 0.5% Eiken agar at 30 °C and they harbored 11 lateral flagellar genes lafB, lafK, lafS, lafT, lafU, flgCL, flgGL, flgNL, fliEL, fliFL, and fliGL. No association was found between biochemical properties and motility phenotypes. Interestingly, a significant association between swarming and strains isolated from pus was observed (p = 0.0171). Three strains 187, 277, and 289 isolated from pus belonged to novel sequence types (ST522 and ST524) exhibited fast swimming and swarming profiles, and they harbored > 90% of the flagellar genes tested. Our findings provide a fundamental understanding of flagellar-mediated motility in A. dhakensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Carriero MM, Maia MA, Sousa RL, Henrique-Silva F (2016) Characterization of a new strain of Aeromonas dhakensis isolated from diseased pacu fish (Piaractus mesopotamicus) in Brazil. J Fish Dis 39:1285–1295. https://doi.org/10.1111/jfd.12457

    Article  CAS  PubMed  Google Scholar 

  2. Soto-Rodriguez SA, Lozano-Olvera R, Garcia-Gasca MT, Abad-Rosales SM, Gomez-Gil B, Ayala-Arellano J (2018) Virulence of the fish pathogen Aeromonas dhakensis: genes involved, characterization and histopathology of experimental infected hybrid tilapia. Dis Aquat Org 129:107–116. https://doi.org/10.3354/dao03247

    Article  CAS  Google Scholar 

  3. Chen PL, Lamy B, Ko WC (2016) Aeromonas dhakensis, an increasingly recognized human pathogen. Front Microbiol 7:793. https://doi.org/10.3389/fmicb.2016.00793

    Article  PubMed  PubMed Central  Google Scholar 

  4. Khor WC, Puah SM, Koh TH, Tan JA, Puthucheary SD, Chua KH (2018) Comparison of clinical isolates of Aeromonas from Singapore and Malaysia with regard to molecular identification, virulence, and antimicrobial profiles. Microb Drug Resist 24:469–478. https://doi.org/10.1089/mdr.2017.0083

    Article  CAS  PubMed  Google Scholar 

  5. Puthucheary SD, Puah SM, Chua KH (2012) Molecular characterization of clinical isolates of Aeromonas species from Malaysia. PLoS One 7:e30205. https://doi.org/10.1371/journal.pone.0030205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Awan MB, Ahmed MM, Bari A, Saad AM (2005) Biochemical characterization of the Aeromonas species isolated from food and environment. Pak J Physiol 1:1–2

    Google Scholar 

  7. Cheok YY, Puah SM, Chua KH, Tan JAMA (2020) Isolation and molecular identification of Aeromonas species from the tank water of ornamental fishes. Acta Vet Hung 68:130–139. https://doi.org/10.1556/004.2020.00029

  8. Lau TTV, Tan JAMA, Puthucheary SD, Puah SM, Chua KH (2020) Genetic relatedness and novel sequence types of clinical Aeromonas dhakensis from Malaysia. Braz J Microbiol 51:909–918. https://doi.org/10.1007/s42770-020-00239-8

    Article  CAS  PubMed  Google Scholar 

  9. Puah SM, Khor WC, Kee BP, Tan J, Puthucheary SD, Chua KH (2018) Development of a species-specific PCR-RFLP targeting rpoD gene fragment for discrimination of Aeromonas species. J Med Microbiol 67:1271–1278. https://doi.org/10.1099/jmm.0.000796

    Article  CAS  PubMed  Google Scholar 

  10. Chaban B, Hughes HV, Beeby M (2015) The flagellum in bacterial pathogens: For motility and a whole lot more. Semin Cell Dev Biol 46:91–103. https://doi.org/10.1016/j.semcdb.2015.10.032

    Article  CAS  PubMed  Google Scholar 

  11. Wilhelms M, Molero R, Shaw JG, Tomas JM, Merino S (2011) Transcriptional hierarchy of Aeromonas hydrophila polar-flagellum genes. J Bacteriol 193:5179–5190. https://doi.org/10.1128/JB.05355-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Canals R, Altarriba M, Vilches S, Horsburgh G, Shaw JG, Tomás JM, Merino S (2006) Analysis of the lateral flagellar gene system of Aeromonas hydrophila AH-3. J Bacteriol 188:852–862. https://doi.org/10.1128/JB.188.3.852-862.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilhelms M, Gonzalez V, Tomás JM, Merino S (2013) Aeromonas hydrophila lateral flagellar gene transcriptional hierarchy. J Bacteriol 195:1436–1445. https://doi.org/10.1128/JB.01994-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McCarter LL (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7:18–29. https://doi.org/10.1159/000077866

    Article  CAS  PubMed  Google Scholar 

  15. Canals R, Ramirez S, Vilches S, Horsburgh G, Shaw JG, Tomás JM, Merino S (2006) Polar flagellum biogenesis in Aeromonas hydrophila. J Bacteriol 188:542–555. https://doi.org/10.1128/JB.188.2.542-555.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rabaan AA, Gryllos I, Tomas JM, Shaw JG (2001) Motility and the polar flagellum are required for Aeromonas caviae adherence to HEp-2 cells. Infect Immun 69:4257–4267. https://doi.org/10.1128/IAI.69.7.4257-4267.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kirov SM, Tassell BC, Semmler AB, O’Donovan LA, Rabaan AA, Shaw JG (2002) Lateral flagella and swarming motility in Aeromonas species. J Bacteriol 184:547–555. https://doi.org/10.1128/JB.184.2.547-555.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prüss BM, Matsumura P (1997) Cell cycle regulation of flagellar genes. J Bacteriol 179:5602–5604. https://doi.org/10.1128/jb.179.17.5602-5604.1997

    Article  PubMed  PubMed Central  Google Scholar 

  19. Matilla MA, Krell TJ (2018) The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 42:fux052. https://doi.org/10.1093/femsre/fux052

    Article  CAS  Google Scholar 

  20. Gosink KK, Kobayashi R, Kawagishi I, Häse CC (2002) Analyses of the roles of the three cheA homologs in chemotaxis of Vibrio cholerae. J Bacteriol 184:1767–1771. https://doi.org/10.1128/jb.184.6.1767-1771.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee JH, Rho JB, Park KJ, Kim CB, Han YS, Choi SH, Lee KH, Park SJ (2004) Role of flagellum and motility in pathogenesis of Vibrio vulnificus. Infect Immun 72:4905–4910. https://doi.org/10.1128/IAI.72.8.4905-4910.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chevance FF, Takahashi N, Karlinsey, Gnerer J, Hirano T, Samudrala R, Aizawa S, Hughes KT (2007) The mechanism of outer membrane penetration by the eubacterial flagellum and implications for spirochete evolution. Genes Dev 21:2326–2335. https://doi.org/10.1101/gad.1571607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cohen EJ, Hughes KT (2014) Rod-to-hook transition for extracellular flagellum assembly is catalyzed by the L-ring-dependent rod scaffold removal. J Bacteriol 196:2387–2395. https://doi.org/10.1128/JB.01580-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Altarriba M, Merino S, Gavı́n R, Canals R, Rabaan A, Shaw JG, Tomás JM (2003) A polar flagella operon (flg) of Aeromonas hydrophila contains genes required for lateral flagella expression. Microb Pathog 34:249–259. https://doi.org/10.1016/s0882-4010(03)00047-0

    Article  CAS  PubMed  Google Scholar 

  25. Bennett JC, Thomas J, Fraser GM, Hughes C (2001) Substrate complexes and domain organization of the Salmonella flagellar export chaperones FlgN and FliT. Mol Microbiol 39:781–791. https://doi.org/10.1046/j.1365-2958.2001.02268.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Soutourina OA, Semenova EA, Parfenova VV, Danchin A, Bertin P (2001) Control of bacterial motility by environmental factors in polarly flagellated and peritrichous bacteria isolated from Lake Baikal. Appl Environ Microbiol 67:3852–3859. https://doi.org/10.1128/aem.67.9.3852-3859.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lai HC, Soo PC, Wei JR, Yi WC, Liaw SJ, Horng YT, Lin SM, Ho SW, Swift S, Williams P (2005) The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. J Bacteriol 187:3407–3414. https://doi.org/10.1128/JB.187.10.3407-3414.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Soo PC, Horng YT, Wei JR, Shu JC, Lu CC, Lai HC (2008) Regulation of swarming motility and flhDCSm expression by RssAB signaling in Serratia marcescens. J Bacteriol 190:2496–2504. https://doi.org/10.1128/JB.01670-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu JH, Lai MJ, Ang S, Shu JC, Soo PC, Horng YT, Yi WC, Lai HC, Luh KT, Ho SW, Swift S (2000) Role of flhDC in the expression of the nuclease gene nucA, cell division and flagellar synthesis in Serratia marcescens. J Biomed Sci 7:475–483. https://doi.org/10.1007/bf02253363

    Article  CAS  PubMed  Google Scholar 

  30. Toguchi A, Siano M, Burkart M, Harshey RM (2000) Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide. J Bacteriol 182:6308–6321. https://doi.org/10.1128/JB.182.22.6308-6321.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stewart BJ, McCarter LL (2003) Lateral flagellar gene system of Vibrio parahaemolyticus. J Bacteriol 185:4508–4518. https://doi.org/10.1128/jb.185.15.4508-4518.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tambalo DD, Yost CK, Hynes MF (2010) Characterization of swarming motility in Rhizobium leguminosarum bv. viciae. FEMS Microbiol Lett 307:165–174. https://doi.org/10.1111/j.1574-6968.2010.01982.x

    Article  CAS  PubMed  Google Scholar 

  33. Kim YK, McCarter LL (2004) Cross-regulation in Vibrio parahaemolyticus: compensatory activation of polar flagellar genes by the lateral flagellar regulator LafK. J Bacteriol 186:4014–4018. https://doi.org/10.1128/JB.186.12.4014-4018.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jian H, Wang H, Zeng X, Xiong L, Wang F, Xiao X (2016) Characterization of the relationship between polar and lateral flagellar structural genes in the deep-sea bacterium Shewanella piezotolerans WP3. Sci Rep 6:39758–39758. https://doi.org/10.1038/srep39758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mattingly AE, Weaver AA, Dimkovikj A, Shrout JD (2018) Assessing travel conditions: environmental and host influences on bacterial surface motility. J Bacteriol 200:e00014–e00018. https://doi.org/10.1128/JB.00014-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harshey RM, Matsuyama T (1994) Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proc Natl Acad Sci USA 91:8631–8635. https://doi.org/10.1073/pnas.91.18.8631

    Article  CAS  PubMed  Google Scholar 

  37. Jahid IK, Lee NY, Kim A, Ha SD (2013) Influence of glucose concentrations on biofilm formation, motility, exoprotease production, and quorum sensing in Aeromonas hydrophila. J Food Prot 76:239–247. https://doi.org/10.4315/0362-028X.JFP-12-321

    Article  CAS  PubMed  Google Scholar 

  38. Armbruster CE, Hodges SA, Mobley HL (2013) Initiation of swarming motility by Proteus mirabilis occurs in response to specific cues present in urine and requires excess L-glutamine. J Bacteriol 195:1305–1319. https://doi.org/10.1128/JB.02136-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Köhler T, Curty LK, Barja F, Delden CV, Pechère JC (2000) Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996. https://doi.org/10.1128/jb.182.21.5990-5996.2000

    Article  PubMed  PubMed Central  Google Scholar 

  40. Esteve C, Alcaide E, Blasco MD (2012) Aeromonas hydrophila subsp. dhakensis isolated from feces, water and fish in Mediterranean Spain. Microbes Environ 27:367–373. https://doi.org/10.1264/jsme2.me12009

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the University of Malaya Research grant (UMRG RP039B-15HTM).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments, SMP and KHC; conducted the experiments and wrote the original manuscript, TTVL; contributed supplied materials, KHC, JAMAT, and SDP; data collection, analyzed the data, and edited the original manuscript, TTVL and SMP; supervised and revised the manuscript, KHC, SMP, JAMAT, and SDP. All authors have read and agreed to the published article.

Corresponding author

Correspondence to Kek-Heng Chua.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest.

Ethics approval and consent to participate

Not applicable

Additional information

Responsible Editor: Rodrigo Galhardo

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 4925 kb)

ESM 2

(PDF 3085 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, TT.V., Puah, SM., Tan, JA.M.A. et al. Characterization of the relationship between polar and lateral flagellar genes in clinical Aeromonas dhakensis: phenotypic, genetic and biochemical analyses. Braz J Microbiol 52, 517–529 (2021). https://doi.org/10.1007/s42770-021-00457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-021-00457-8

Keywords

Navigation