Skip to main content

Advertisement

Log in

The unexplored bacterial lifestyle on leaf surface

  • Environmental Microbiology - Review
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Social interactions impact microbial communities and these relationships are mediated by small molecules. The chemical ecology of bacteria on the phylloplane environment is still little explored. The harsh environmental conditions found on leaf surface require high metabolic performances of the bacteria in order to survive. That is interesting both for scientific fields of prospecting natural molecules and for the ecological studies. Important queries about the bacterial lifestyle on leaf surface remain not fully comprehended. Does the hostility of the environment increase the populations’ cellular altruism by the production of molecules, which can benefit the whole community? Or does the reverse occur and the production of molecules related to competition between species is increased? Does the phylogenetic distance between the bacterial populations influence the chemical profile during social interactions? Do phylogenetically related bacteria tend to cooperate more than the distant ones? The phylloplane contains high levels of yet uncultivated microorganisms, and understanding the molecular basis of the social networks on this habitat is crucial to gain new insights on the ecology of the mysterious community members due to interspecies molecular dependence. Here, we review and discuss what is known about bacterial social interactions and their chemical lifestyle on leaf surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sueur C, Mery F (2017) Editorial : Social interaction in animals : linking experimental approach and social network analysis 8:8–10. https://doi.org/10.1038/nature09831

  2. Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M, Gophna U, Sharan R, Ruppin E (2011) Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun 2:587–589. https://doi.org/10.1038/ncomms1597

    Article  CAS  Google Scholar 

  3. Yang Y, Xu Y, Straight P, Dorrestein PC (2009) Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol 5:885–887. https://doi.org/10.1038/nchembio.252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang R, Li M, Gregory RL (2011) Bacterial interactions in dental biofilm. 435–444

  5. Tyc O, de Jager VCL, van den Berg M, Gerards S, Janssens TKS, Zaagman N, Kai M, Svatos A, Zweers H, Hordijk C, Besselink H, de Boer W, Garbeva P (2017) Exploring bacterial interspecific interactions for discovery of novel antimicrobial compounds. Microb Biotechnol 10:910–925. https://doi.org/10.1111/1751-7915.12735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blanchard AE, Lu T (2015) Bacterial social interactions drive the emergence of differential spatial colony structures. BMC Syst Biol 9:59. https://doi.org/10.1186/s12918-015-0188-5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lambert G, Vyawahare S, Austin RH (2014) Bacteria and game theory: the rise and fall of cooperation in spatially heterogeneous environments. Interface Focus 4:20140029. https://doi.org/10.1098/rsfs.2014.0029

    Article  PubMed  PubMed Central  Google Scholar 

  8. West SA, Diggle SP, Buckling A, et al (2007) The social lives of microbes. https://doi.org/10.1146/annurev.ecolsys.38.091206.095740

  9. West SA, Cooper GA (2016) Division of labour in microorganisms : an evolutionary perspective. Nat Publ Gr 14:716–723. https://doi.org/10.1038/nrmicro.2016.111

    Article  CAS  Google Scholar 

  10. Asfahl KL, Schuster M (2017) Social interactions in bacterial cell-cell signaling. FEMS Microbiol Rev 41:92–107. https://doi.org/10.1093/femsre/fuw038

    Article  CAS  PubMed  Google Scholar 

  11. Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere MINIREVIEW. Appl Environ Microbiol 69:1875–1883. https://doi.org/10.1128/AEM.69.4.1875

  12. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Publ Gr 10:828–840. https://doi.org/10.1038/nrmicro2910

    Article  CAS  Google Scholar 

  13. Lambais MR, Crowley DE, Cury JC, et al (2006) American Association for the Advancement of Science. Science (80- ) 312:18–19

  14. Andrews JH (1992) Biological control in the phyllosphere

  15. Müller T, Ruppel S (2014) Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol 87:2–17. https://doi.org/10.1111/1574-6941.12198

    Article  CAS  PubMed  Google Scholar 

  16. Lambais MR, Barrera SE, Santos EC, Crowley DE, Jumpponen A (2016) Phyllosphere metaproteomes of trees from the Brazilian Atlantic forest show high levels of functional redundancy. Microb Ecol 73:123–134. https://doi.org/10.1007/s00248-016-0878-6

    Article  CAS  PubMed  Google Scholar 

  17. Christenhusz MJM, Byng JW (2016) The number of known plants species in the world and its annual increase. Phytotaxa 261:201–217. https://doi.org/10.11646/phytotaxa.261.3.1

    Article  Google Scholar 

  18. Mazinani Z, Zamani M, Sardari S (2017) Isolation and identification of phyllospheric bacteria possessing antimicrobial activity from Astragalus obtusifolius, Prosopis juliflora, Xanthium strumarium and Hippocrepis unisiliqousa. Avicenna J Med Biotechnol 9:31–37

    PubMed  PubMed Central  Google Scholar 

  19. Kim M, Singh D, Lai-Hoe A, Go R, Abdul Rahim R, A.N. A, Chun J, Adams JM (2012) Distinctive phyllosphere bacterial communities in tropical trees. Microb Ecol 63:674–681. https://doi.org/10.1007/s00248-011-9953-1

    Article  PubMed  Google Scholar 

  20. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. PNAS 106:16428–16433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Helfrich EJN, Vogel CM, Ueoka R, Schäfer M, Ryffel F, Müller DB, Probst S, Kreuzer M, Piel J, Vorholt JA (2018) Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat Microbiol 3:909–919. https://doi.org/10.1038/s41564-018-0200-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. HASHIDOKO Y, ITOH E, YOKOTA K, YOSHIDA T, TAHARA S (2002) Characterization of five phyllosphere bacteria isolated from Rosa rugosa leaves, and their phenotypic and metabolic properties. Biosci Biotechnol Biochem 66:2474–2478. https://doi.org/10.1271/bbb.66.2474

    Article  CAS  PubMed  Google Scholar 

  23. Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Guenther A, Llusià J, Rico L, Terradas J, Farré-Armengol G, Filella I, Parella T, Peñuelas J (2016) Shifts in plant foliar and floral metabolomes in response to the suppression of the associated microbiota. BMC Plant Biol 16:1–12. https://doi.org/10.1186/s12870-016-0767-7

    Article  CAS  Google Scholar 

  24. Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6:1378–1390. https://doi.org/10.1038/ismej.2011.192

    Article  CAS  PubMed  Google Scholar 

  25. Esser DS, Leveau JHJ, Meyer KM, Wiegand K (2015) Spatial scales of interactions among bacteria and between bacteria and the leaf surface. FEMS Microbiol Ecol 91:1–13. https://doi.org/10.1093/femsec/fiu034

    Article  CAS  Google Scholar 

  26. Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010) Site and plant species are important determinants of the methylobacterium community composition in the plant phyllosphere. ISME J 4:719–728. https://doi.org/10.1038/ismej.2010.9

    Article  CAS  PubMed  Google Scholar 

  27. Lindow S (1996) Strain A506 in the control of fire blight and frost injury to pear. Phytopathology 86:841

    Article  CAS  Google Scholar 

  28. Saleem M, Meckes N, Pervaiz ZH, et al (2017) Microbial interactions in the phyllosphere increase plant performance under herbivore biotic stress 8:1–10. https://doi.org/10.3389/fmicb.2017.00041

  29. Lindemann J, Suslow T (1987) Competition between ice nucleation-active wild type and ice nucleation-deficient deletion mutant strains of Pseudomonas syringae and P. fluorescens biovar I and biological control of frost injury on strawberry blossoms. Phytopathology 77:882–886. https://doi.org/10.1094/Phyto-77-882

    Article  Google Scholar 

  30. Karamanoli K, Menkissoglu-Spiroudi U, Bosabalidis AM, Vokou D, Constantinidou HIA (2005) Bacterial colonization of the phyllosphere of nineteen plant species and antimicrobial activity of their leaf secondary metabolites against leaf associated bacteria. Chemoecology 15:59–67. https://doi.org/10.1007/s00049-005-0297-5

    Article  Google Scholar 

  31. Ruppel S, Krumbein A, Schreiner M (2008) Composition of the phyllospheric microbial populations on vegetable plants with different glucosinolate and carotenoid compositions. Microb Ecol 56:364–372. https://doi.org/10.1007/s00248-007-9354-7

    Article  CAS  PubMed  Google Scholar 

  32. Braga RM, Dourado MN, Araújo WL (2016) Microbial interactions: ecology in a molecular perspective. Braz J Microbiol 47:86–98. https://doi.org/10.1016/j.bjm.2016.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Madigan MT, Martinko JM, Bender KS et al (2015) Brock biology of microorganisms, fourteenth. Pearson, Boston

    Google Scholar 

  34. Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P (2017) Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol 55:565–589. https://doi.org/10.1146/annurev-phyto-080516-035623

    Article  CAS  PubMed  Google Scholar 

  35. Rastogi G, Coaker GL, Leveau JHJ (2013) New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348:1–10. https://doi.org/10.1111/1574-6968.12225

    Article  CAS  PubMed  Google Scholar 

  36. Bringel F (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. 6:1–14. https://doi.org/10.3389/fmicb.2015.00486

  37. Leveau JHJ, Lindow SE (2000) Appetite of an epiphyte : quantitative monitoring of bacterial sugar consumption in the phyllosphere

  38. Kembel SW, Connor TKO, Arnold HK, et al (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest 111:13715–13720. https://doi.org/10.1073/pnas.1216057111

  39. Humphrey PT, Nguyen TT, Whiteman MMV and NK (2014) Diversity and abundance of phyllosphere bacteria are linked to insect herbivory. 1497–1515. https://doi.org/10.1111/mec.12657

  40. Dias ACF, Taketani RG, Andreote FD, et al (2012) Interspecific variation of the bacterial community structure in the phyllosphere of. 653–660

  41. Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD (2010) Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl Environ Microbiol 76:8117–8125. https://doi.org/10.1128/AEM.01321-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA (2014) A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet 10:e1004283. https://doi.org/10.1371/journal.pgen.1004283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Venkatachalam S, Ranjan K, Prasanna R, et al (2016) Diversity and functional traits of culturable microbiome members , including cyanobacteria in the rice phyllosphere. 18:627–637. https://doi.org/10.1111/plb.12441

  44. AKUTSU K, HIRATA A, YAMAMOTO M, et al (1993) Growth inhibition of Botrytis spp. by Serratia B2 isolated from tomato phylloplane marcescens

  45. Senthilkumar M, Krishnamoorthy R (2017) Isolation and characterization of tomato leaf phyllosphere Methylobacterium and their effect on plant growth. Int J Curr Microbiol App Sci 6:2121–2136. https://doi.org/10.20546/ijcmas.2017.611.250

    Article  CAS  Google Scholar 

  46. Sandhu A, Halverson LJ, Beattie GA (2007) Bacterial degradation of airborne phenol in the phyllosphere. Environ Microbiol 9:383–392. https://doi.org/10.1111/j.1462-2920.2006.01149.x

    Article  CAS  PubMed  Google Scholar 

  47. Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2:561–570. https://doi.org/10.1038/ismej.2008.14

    Article  CAS  PubMed  Google Scholar 

  48. Qin C, Tao J, Liu T, Liu Y, Xiao N, Li T, Gu Y, Yin H, Meng D (2019) Responses of phyllosphere microbiota and plant health to application of two different biocontrol agents. AMB Express 9:42. https://doi.org/10.1186/s13568-019-0765-x

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ates O (2015) Systems biology of microbial exopolysaccharides production. Front Bioeng Biotechnol 3:1–16. https://doi.org/10.3389/fbioe.2015.00200

    Article  Google Scholar 

  50. Vetsigian K (2017) Diverse modes of eco-evolutionary dynamics in communities of antibiotic-producing microorganisms. Nat Ecol Evol 1:1–9. https://doi.org/10.1038/s41559-017-0189

    Article  Google Scholar 

  51. Aruldass CA, Dufossé L, Ahmad WA (2018) Current perspective of yellowish-orange pigments from microorganisms- a review. J Clean Prod 180:168–182. https://doi.org/10.1016/j.jclepro.2018.01.093

    Article  CAS  Google Scholar 

  52. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments (nature).PDF. Nature 409:1092–1101. https://doi.org/10.1038/35059215

  53. Brodie EL, DeSantis TZ, Parker JPM et al (2007) Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci 104:299–304

    Article  CAS  PubMed  Google Scholar 

  54. Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallmann J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229. https://doi.org/10.1016/j.femsec.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  55. Baez A, Shiloach J (2014) Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds. Microb Cell Factories 13:1–7. https://doi.org/10.1186/s12934-014-0181-5

    Article  CAS  Google Scholar 

  56. Magan N, McLeod A (1991) Microbial ecology of leaves, 1 st editi

  57. Knief C, Frances L, Vorholt JA (2010) Competitiveness of diverse Methylobacterium strains in the phyllosphere of Arabidopsis thaliana and identification of representative models, including M. extorquens PA1:440–452. https://doi.org/10.1007/s00248-010-9725-3

  58. Ryffel F, Helfrich EJN, Kiefer P, Peyriga L, Portais JC, Piel J, Vorholt JA (2016) Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J 10:632–643. https://doi.org/10.1038/ismej.2015.141

    Article  CAS  PubMed  Google Scholar 

  59. Jr Tukey HB (1966) Torrey Botanical Society Leaching of metabolites from above-ground plant parts and its implications Author ( s ): H . B . Tukey , Jr . Source : Bulletin of the Torrey Botanical Club , Vol . 93 , No . 6 ( Nov . - Dec ., 1966 ), pp . 385–401 Published by : 93:385–401

  60. Sobrado MA (2004) Influence of external salinity on the osmolality of xylem sap , leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa ( L .) Gaertn. 422–427. https://doi.org/10.1007/s00468-004-0320-4

  61. Ceri H, Olson ME, Stremick C, et al (1999) The Calgary biofilm device : new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms 37:1771–1776

  62. Sundin GW, Jacobs JL (1999) Research articles. 27–38. https://doi.org/10.1007/s002489900152

  63. Yang C, Crowley DE, Borneman J, Keen NT (2001) Microbial phyllosphere populations are more complex than previously realized 98:

  64. Kadivar H, Stapleton AE (2003) Ultraviolet radiation alters maize phyllosphere bacterial diversity. 353–361. https://doi.org/10.1007/s00248-002-1065-5

  65. Mercier J, Lindow SE (2000) Role of leaf surface sugars in colonization of plants by bacterial epiphytes role of leaf surface sugars in colonization of plants by bacterial epiphytes 66:. https://doi.org/10.1128/AEM.66.1.369-374.2000.Updated

  66. Nadalig T, Farhan M, Haque U, et al (2018) Detection and isolation of chloromethane-degrading bacteria from 77:438–448. https://doi.org/10.1111/j.1574-6941.2011.01125.x

  67. Gourion B, Rossignol M, Vorholt JA (2006) A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci U S A 103:13186–13191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Burch AY, Zeisler V, Yokota K, Schreiber L, Lindow SE (2014) The hygroscopic biosurfactant syringafactin produced by Pseudomonas syringae enhances fitness on leaf surfaces during fluctuating humidity. Environ Microbiol 16:2086–2098. https://doi.org/10.1111/1462-2920.12437

    Article  CAS  PubMed  Google Scholar 

  69. Jacobs JL, Carroll TL, Sundin GW (2005) The role of pigmentation, ultraviolet radiation tolerance, and leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microb Ecol 49:104–113. https://doi.org/10.1007/s00248-003-1061-4

    Article  CAS  PubMed  Google Scholar 

  70. Stubbendieck RM, Vargas-bautista C, Straight PD, et al (2016) Bacterial communities : interactions to scale 7:1–19. https://doi.org/10.3389/fmicb.2016.01234

  71. Garbeva P, Hordijk C, Gerards S, De Boer W (2014) Volatile-mediated interactions between phylogenetically different soil bacteria. Front Microbiol 5:1–9. https://doi.org/10.3389/fmicb.2014.00289

    Article  Google Scholar 

  72. Bérdy J (2005) Review article 58:1–26

  73. Johnstonea TC, Nolan EM (2015) HHS Public Access 91:165–171. https://doi.org/10.1016/j.chemosphere.2012.12.037.Reactivity

  74. Surette MG, Bassler BL (1998) Quorum sensing in Escherichia coli and Salmonella typhimurium 95:7046–7050

  75. Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D (2015) Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 40:86–116. https://doi.org/10.1093/femsre/fuv038

    Article  CAS  PubMed  Google Scholar 

  76. Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015. https://doi.org/10.3390/ijms131114002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Andersson S, Kuttuva Rajarao G, Land CJ, Dalhammar G (2008) Biofilm formation and interactions of bacterial strains found in wastewater treatment systems. FEMS Microbiol Lett 283:83–90. https://doi.org/10.1111/j.1574-6968.2008.01149.x

    Article  CAS  PubMed  Google Scholar 

  78. Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, le Roux F, Mincer T, Polz MF (2012) Antibiotic production and resistance. Science 337:1228–1231. https://doi.org/10.1126/science.1219385

    Article  CAS  PubMed  Google Scholar 

  79. Schroeckha V, Scherlachb K, Hans Wilhelm nu tzmanna ES, et al (2009) Intimate bacterial – fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans 106:

  80. Hashidoko Y (2005) Ecochemical studies of interrelationships between epiphytic bacteria and host plants via secondary metabolites. Biosci Biotechnol Biochem 69:1427–1441. https://doi.org/10.1271/bbb.69.1427

    Article  CAS  PubMed  Google Scholar 

  81. Mensi I, Daugrois JH, Pieretti I, Gargani D, Fleites LA, Noell J, Bonnot F, Gabriel DW, Rott P (2016) Surface polysaccharides and quorum sensing are involved in the attachment and survival of Xanthomonas albilineans on sugarcane leaves. Mol Plant Pathol 17:236–246. https://doi.org/10.1111/mpp.12276

    Article  CAS  PubMed  Google Scholar 

  82. Remus-emsermann MNP, Schlechter RO (2018) Tansley insight phyllosphere microbiology : at the interface between microbial individuals and the plant host. https://doi.org/10.1111/nph.15054

  83. Ma A, Lv D, Zhuang X, Zhuang G (2013) Quorum quenching in culturable phyllosphere bacteria from tobacco. 14607–14619. https://doi.org/10.3390/ijms140714607

  84. Stone BWG, Weingarten EA, Jackson CR (2018) The role of the phyllosphere microbiome in plant health and function. Annu Plant Rev online:533–556. https://doi.org/10.1002/9781119312994.apr0614

  85. Schlechter RO, Miebach M, Remus-emsermann MNP (2019) Driving factors of epiphytic bacterial communities : a review. J Adv Res 19:57–65. https://doi.org/10.1016/j.jare.2019.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wiraswati SM, Rusmana I, Nawangsih AA, Wahyudi AT (2019) Antifungal activities of bacteria producing bioactive compounds isolated from rice phyllosphere against Pyricularia oryzae. J Plant Prot Res 59:86–94. https://doi.org/10.24425/jppr.2019.126047

    Article  CAS  Google Scholar 

  87. Rodarte MP, Dias DR, Vilela DM, Schwan RF (2011) Atividade proteolítica de bactérias, leveduras e fungos filamentosos presentes em grãos de café (Coffea arabica L.). Acta Sci - Agron 33:457–464. https://doi.org/10.4025/actasciagron.v33i3.6734

    Article  CAS  Google Scholar 

  88. Carvalho SD, Castillo JA (2018) Influence of light on plant–phyllosphere interaction. Front Plant Sci 9:1–16. https://doi.org/10.3389/fpls.2018.01482

    Article  Google Scholar 

  89. Doan HK, Leveau JHJ (2015) Artificial surfaces in phyllosphere microbiology. Phytopathology 105:1036–1042. https://doi.org/10.1094/PHYTO-02-15-0050-RVW

    Article  PubMed  Google Scholar 

  90. Bassler BL, Wright M, Stiverman MR (1994) Multiple signalling systems controlling expression of luminescence in Vibrio harveyi : sequence and function of genes encoding a second sensory pathway 13:273–286

  91. FUQUA WC, WINANS SC, GREENBERG EP (1994) MINIREVIEW 176:269–275, Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators

  92. Whiteley M, Stephen P (2017) Review quorum sensing research. Nat Publ Gr 551:313–320. https://doi.org/10.1038/nature24624

    Article  CAS  Google Scholar 

  93. Madhaiyan M, Poonguzhali S (2014) Methylobacterium pseudosasae sp nov, a pink-pigmented, facultatively methylotrophic bacterium isolated from the bamboo phyllosphere. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 105:367–376. https://doi.org/10.1007/s10482-013-0085-0

    Article  CAS  Google Scholar 

  94. Yoshida S, Kinkel LL, Shinohara H, Numajiri N, Hiradate S, Koitabashi M, Suyama K, Negishi H, Tsushima S (2006) Production of quorum-sensing-related signal molecules by epiphytic bacteria inhabiting wheat heads. Can J Microbiol 52:411–418. https://doi.org/10.1139/w05-146

    Article  CAS  PubMed  Google Scholar 

  95. Rampelotto PH (2013) Extremophiles and extreme. Environments. 482–485:482–485. https://doi.org/10.3390/life3030482

    Article  Google Scholar 

  96. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Publ Gr 15:579–590. https://doi.org/10.1038/nrmicro.2017.87

    Article  CAS  Google Scholar 

  97. Bose U, Hewavitharana AK, Ng YK, et al (2015) LC-MS-based metabolomics study of marine bacterial secondary metabolite and antibiotic production in Salinispora arenicola. 249–266. https://doi.org/10.3390/md13010249

  98. Purves K, Macintyre L, Brennan D et al (2016) Using molecular networking for microbial secondary metabolite bioprospecting. https://doi.org/10.3390/metabo6010002

  99. Covington BC, McLean JA, Bachmann BO (2017) Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Nat Prod Rep 34:6–24. https://doi.org/10.1039/c6np00048g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Boya PCA, Fernández-Marín H, Mejía LC et al (2017) Imaging mass spectrometry and MS/MS molecular networking reveals chemical interactions among cuticular bacteria and pathogenic fungi associated with fungus-growing ants. Sci Rep 7:5604. https://doi.org/10.1038/s41598-017-05515-6

    Article  CAS  Google Scholar 

  101. Mohimani H, Gurevich A, Shlemov A, Mikheenko A, Korobeynikov A, Cao L, Shcherbin E, Nothias LF, Dorrestein PC, Pevzner PA (2018) Dereplication of microbial metabolites through database search of mass spectra. Nat Commun 9:1–12. https://doi.org/10.1038/s41467-018-06082-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Rodrigo Mendes from EMBRAPA Environment for reading this manuscript and giving invaluable insights and ideas.

Funding

This study was financed by FAPESP’s Young Investigators grant (2013/03158-4). MAM, JBC, and LB received doctorate fellowships from CNPq (142309/2016-8), FAPESP (2015/14680-9), and CAPES (1727083), respectively. DTS received a post-doctorate fellowship from FAPESP, grant (2017/21229-7). RGT received a Young investigator fellowship (2013/23470-2) and CNPq (302364/2018-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo G. Taketani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Ieda Carvalho Mendes.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moitinho, M.A., Souza, D.T., Chiaramonte, J.B. et al. The unexplored bacterial lifestyle on leaf surface. Braz J Microbiol 51, 1233–1240 (2020). https://doi.org/10.1007/s42770-020-00287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00287-0

Keywords

Navigation