Skip to main content
Log in

Yeast in plant phytotelmata: Is there a “core” community in different localities of rupestrian savannas of Brazil?

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Ephemeral microbial communities usually undergo priority effect and result in higher diversity with a few representatives of each species. Community structure of yeasts in bromeliad tanks was compared between two rupestrian savanna (Cerrado) areas in Brazil and to yeasts isolated from water holes in the same areas. Water samples were collected from 60 tanks of bromeliads Bromelia karatas and Encholirium sp. and rock holes at the Karstic Area of Aurora, Tocantins State and 60 tanks of Vriesea minarum (Bromeliaceae) and Paepalanthus bromelioides (Eriocaulaceae) at Serra do Cipó National Park, Minas Gerais State in Brazil. The yeast diversity comprised 90 species from which 60% are basidiomycetous yeasts usually associated with phylloplane, soils, and aquatic habitats. The species Papiliotrema laurentii, Rhodotorula mucilaginosa, Pa. nemorosus, and Pseudozyma hubeiensis were the most frequent species associated with bromeliads. Eighteen yeast species, two ascomycetous and 16 basidiomycetous, were consistently isolated from the substrates in both areas and may represent a core community in bromeliads in rupestrian fields. Singlets occurred in 38 to 69% of samples, and 32 species were isolated only once. Our findings reinforce the ephemeral nature of the yeast communities associated with tank-forming plants in which individual phytotelmata act as patches or aquatic islands prone to rapid colonization-extinction rates receiving inocula from plant and soil debris. Ephemeral rock holes also represent a transitory habitat for yeast species associated with plants and soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The genomic datasets generated during and/or analyzed during the current study are available in the GenBank repository.

The ecological datasets on yeast population counts in the current study are available from the corresponding author on reasonable request.

References

  1. Givnish TJ, Barfuss MH, Van Ee B, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith JA, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. Am J Bot 98:872–895. https://doi.org/10.3732/ajb.1000059

    Article  Google Scholar 

  2. Luther HE (2008) An alphabetical list of bromeliad binomials, 11th edn. The Marie Selby Botanical Gardens, Sarasota, Fl

    Google Scholar 

  3. Gomes FCO, Safar SVB, Marques AR, Medeiros AO, Santos ARO, Carvalho C, Lachance M-A, Sampaio JP, Rosa CA (2015) The diversity and extracellular enzymatic activities of yeasts isolated from water tanks of Vriesea minarum, an endangered bromeliad species in Brazil, and the description of Occultifur brasiliensis f.a., sp. nov. Ant van Leeu Int J Gen Mol Microbiol. https://doi.org/10.1007/s10482-014-0356-4

  4. Landell MF, Mautone JN, Valente P (2006) Biodiversity of yeasts associated to bromeliads in Itapuã Park , Viamão / Rs. Biociencias 14:144–149

  5. Goffredi SK, Jang GE, Woodside WT, Ussler W III (2011) Bromeliad catchments as habitats for methanogenesis in tropical rainforest canopies. Front Microbiol 2. https://doi.org/10.3389/fmicb.2011.00256

  6. Brouard O, Céréghino R, Corbara B, Leroy C, Pelozuelo L, Dejean A, Carrias J-F (2012) Understorey environments influence functional diversity in tank-bromeliad ecosystems. Freshw Biol 57:815–823. https://doi.org/10.1111/j.1365-2427.2012.02749.x

    Article  Google Scholar 

  7. Brandt FB, Martinson GO, Conrad R (2017) Bromeliad tanks are unique habitats for microbial communities involved in methane turnover. Plant Soil 410:167–179. https://doi.org/10.1007/s11104-016-2988-9

    Article  CAS  Google Scholar 

  8. Klann J, McHenry A, Montelongo C, Goffredi SK (2016) Decomposition of plant-sourced carbon compounds by heterotrophic betaproteobacteria isolated from a tropical Costa Rican bromeliad. Microbiology Open 5:479–489. https://doi.org/10.1002/mbo3.344

    Article  CAS  Google Scholar 

  9. Safar, SVB, Gomes, FCO, Marques, AR, Lachance, MA, Rosa, CA (2013) Kazachstania rupicola sp. nov., a yeast species isolated from water tanks of a bromeliad in Brazil. Int J Syst Evol Microbiol doi:https://doi.org/10.1099/ijs.0.048462-0, 2013

  10. Hagler AN, Rosa CA, Morais PB, Mendonça-Hagler LC, Franco GM, Araujo FV, Soares CA (1993) Yeasts and coliform bacteria of water accumulated in bromeliads of mangrove and sand dune ecosystems of Southeast Brazil. Can J Microbiol 39:9373–9977. https://doi.org/10.1139/m93-146

    Article  Google Scholar 

  11. Landell MF, Billodre R, Ramos JP, Leoncini O, Vainstein MH, Valente P (2010) Candida aechmeae sp. nov. and Candida vrieseae sp. nov., novel yeast species isolated from the phylloplane of bromeliads in Southeastern Brazil. Int J Syst Evol Microbiol 60:244–248. https://doi.org/10.1099/ijs.0.011577-0

    Article  CAS  Google Scholar 

  12. Piątek, M, Lutz, M, Sousa, FMP, Santos, ARO, Félix, CR, Landell, MF, Gomes, FCO, Rosa, CA (2017) Pattersoniomyces tillandsiae gen. et comb. nov.: linking sexual and asexual morphs of the only known smut fungus associated with Bromeliaceae. Org Divers Evol 17:531. doi:https://doi.org/10.1007/s13127-017-0340-8

  13. Peay KG, Kennedy PG, Talbot JM (2016) Dimensions of biodiversity in Earth mycobiome. Nature Rev: microbiol 14:434–447. https://doi.org/10.1038/nrmicro.2016.59

    Article  CAS  Google Scholar 

  14. Tedersoo L, Bahram M, Polme S, Koljag U, Yourou NS, Wijesundera R et al (2014) Global diversity and geography of soil fungi. Science 346:1256688. https://doi.org/10.1126/science.1256688

    Article  CAS  Google Scholar 

  15. Smith ME, Henkel TW, Uehling JK, Fremier AK, Clarke HD, Vilgalys R (2013) The ectomycorrhizal fungal community in a Neotropical forest dominated by the endemic dipterocarp Pakaraimaea dipterocarpacea. PLoS One 8:e55160

    Article  CAS  Google Scholar 

  16. Peay KG, Russo SE, McGuire KL, Lim Z, Chan JP, Tan S, Davies SJ (2015) Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient. Ecol Lett 18:807–816. https://doi.org/10.1111/ele.12459

    Article  Google Scholar 

  17. Peay KG, Belisle M, Fukami T (2012) Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc Royal Soc B: Biol Sci 279:749–758. https://doi.org/10.1098/rspb.2011.1230

    Article  Google Scholar 

  18. Meiser A, Balint M, Schmitt I (2014) Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns. New Phytol 201:623–635

    Article  CAS  Google Scholar 

  19. Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI, Erlandson S, Vilgalys R, Liao HL, Smith ME, Peay KG (2014) Endemism and functional convergence across the North American soil mycobiome. Proc Natl Acad Sci U S A 111:6431–6346

    Article  Google Scholar 

  20. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213251

    Article  Google Scholar 

  21. Tuomisto H (2010) A diversity of beta-diversities: straightening up a concept gone awry. Part 1. Defining beta-diversity as a function of alpha and gamma diversity. Ecography 33:2–22. https://doi.org/10.1111/j.1600-0587.2009.05880.x

    Article  Google Scholar 

  22. Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF, Harrison SP, Kraft NJ, Stegen JC, Swenson NG (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28. https://doi.org/10.1111/j.1461-0248.2010.01552.x

    Article  Google Scholar 

  23. Cody ML (1975) Towards a theory of continental species diversities: bird distributions over Mediterranean habitat gradients. In: Cody ML, Diamond JM (eds) Ecology and evolution of communities. Harvard Univ, Press, p 214257

    Google Scholar 

  24. Bratton SP (1975) A comparison of the beta diversity functions of the overstory and herbaceous understory of a deciduous forest Bull. Torrey Bot Club 102:5560

    Article  Google Scholar 

  25. Lande R (1996) Statistics and partitioning of species diversity, and similarity among multiple communities Oikos 76: 513

  26. Martiny JBH, Eisen JA, Penn K, Allison SD, HornerDevine MC (2011) Drivers of bacterial beta-diversity depend on spatial scale. Proc Natl Acad Sci U S A 108:7850–7854

    Article  CAS  Google Scholar 

  27. Nielsen UN, Osler GHR, Campbell CD, Neilson R, Burslem D, Van Der Wal R (2010) The enigma of soil animal species diversity revisited: the role of small-scale heterogeneity. PLoS One 5(7):e11567

    Article  Google Scholar 

  28. Veech JA (2010) Crist, TO. Toward a unified view of diversity partitioning Ecology 91:1988–1992

    Google Scholar 

  29. Almeida-Abreu PA (1995) O Supergrupo Espinhaço da Serra do Espinhaço Meridional (Minas Gerais): O rifte, a bacia e o orógeno. Geonomos 3: 1–18. https://doi.org/10.18285/geonomos.v3i1.211

  30. Giulietti, AM, Menezes, NL, Pirani, JR, Meguro, M, Wanderley, MGL (1987) Flora da Serra do Cipó, MG: caracterização e lista das espécies. Bol Bot Univ SP 9:1–151. https://doi.org/10.11606/issn.2316-9052.v9i0p1-151

  31. Madeira JA, Ribeiro KT, Oliveira MJR, Nascimento JS, Paiva CL (2008) Distribuição espacial do esforço de pesquisa biológica na Serra do Cipó. Minas Gerais: subsídios ao manejo das unidades de conservação da região Megadiversidade 175:385–394. https://doi.org/10.1007/s10909-013-0933-3

    Article  CAS  Google Scholar 

  32. Tocantins (2012) Secretariat of Planning. Superintendence of planning and management of public policies: executive board of directors. Ecological Economic Zoning. Atlas do Tocantins: Subsidies to Territorial Management Planning. 5. Ed. Palmas: Seplan. http://www.sefaz.to.gov.br/zoneamento/zoneamento/atlas-do-tocantins/. Accessed on: 16 July, 2019

  33. Morais F (2009) Contexto geológico das cavernas em arenito do Estado do Tocantins. An XXX Cong Bras Espeleol:139–144

  34. Morais F (2013) Caracterização geomorfológica da região de Aurora do Tocantins, Brasil. Rev Bras Geomorfol 14:163–170

    Google Scholar 

  35. Haidar RF, Fagg JMF, Pinto JRR, Dias RR, Silva LCR, Fagg CW (2013) Florestas estacionais e áreas de ecótono no Estado do Tocantins, Brasil: parâmetros estruturais, classificação das fitofisionomias florestais e subsídios para Conservação. acta Amazon 43:261–290. https://doi.org/10.1590/s0044-59672013000300003

    Article  Google Scholar 

  36. Joly AB (1970) Conheça a vegetação brasileira. Edusp, Polígono, São Paulo

    Google Scholar 

  37. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  38. Libkind D, Brizzio S, Ruffini A, Gadanho M, van Broock M, Sampaio P (2003) Molecular characterization of carotenogenic yeasts from aquatic environments in Patagonia, Argentina. Ant van Leeuw 84:313–322

    Article  CAS  Google Scholar 

  39. Lopes MR, Lara CA, Moura MEF, Uetanabaro APT, Morais PB, Vital MJS, Rosa CA (2018) Characterization of the diversity and physiology of cellobiose-fermenting yeasts isolated from rotting wood in Brazilian ecosystems. Fung Biol 122:668–676. https://doi.org/10.1016/j.funbio.2018.03.008

    Article  CAS  Google Scholar 

  40. Sampaio JP, Gadanho M, Santos S, Duarte, FL, et al. Polyphasic taxonomy of the basidiomycetous yeast genus Rhodosporidium: Rhodosporidium kratochvilovae and related anamorphic species. Int J Syst Evol Microbiol doi:https://doi.org/10.1099/00207713-51-2-687, 2001

  41. White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing 661 of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  42. O'Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Oregon, pp 225–233

    Google Scholar 

  43. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Ant van Leeuw Int J Gen Mol Microbiol 1998:331–371. https://doi.org/10.1023/A:1001761008817

    Article  Google Scholar 

  44. Lachance M-A, Bowles JM, Starmer WT, Barker JSF (1999) Kodamaea kakaduensis and Candida tolerans, two new ascomycetous yeast species from Australian Hibiscus flowers. Can J Microbiol 45:172–177. https://doi.org/10.1139/cjm-45-2-172

    Article  CAS  Google Scholar 

  45. Magurran AE (2004) Measuring biological diversity. Blackwell Publ, 577 p

  46. Oksanen, J, Kindt, R, Blanchet, FG, Legendre, P et al (2012) Package vegan – community ecology package, v. 2.0-4

  47. Araújo FV, Medeiros RJ, Mendonça-Hagler LC, Hagler AN (1998) A preliminary note on yeast communities of bromeliad-tank waters of Rio de Janeiro, Brazil. Rev Microbiol 29:118–121

    Google Scholar 

  48. Boekhout T, Fonseca A, Sampaio JP, Bandoni RJ, Fell JW, Kwon-Chung KJ (2011) Discussion of teleomorphic and anamorphic basidiomycetous yeasts. In: Kurtzman, CP, Fell, JW, Boekhout, T (Edn) the yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1339–1372. https://doi.org/10.1016/B978-0-444-52149-1.00100-2

    Chapter  Google Scholar 

  49. Brandão LR, Vaz ABM, Espírito-Santo LC, Pimenta RS, Morais PB, Libkind D, Rosa LH, Rosa CA (2017) Diversity and biogeographical patterns of yeast communities in Antarctic, Patagonian and tropical lakes. Fungal Ecol 28:33–43. https://doi.org/10.1016/j.funeco.2017.04.003

    Article  Google Scholar 

  50. Ganter PF, Morais PB, Rosa CA (2017) Yeasts in cacti and tropical fruit. In: Buzzini P, Lachance MA, Yurkov A (eds) Yeasts in natural ecosystems: diversity. Springer, New York, pp 225–264

    Chapter  Google Scholar 

  51. Fonseca A, Boekhout T, Fell JW (2011) Cryptococcus Vuillemin (1901). In: Kurtzman, CP, Fell, JW, Boekhout, T (Edn) the yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1661–1739. https://doi.org/10.1016/B978-0-444-52149-1.00138-5

    Chapter  Google Scholar 

  52. Sampaio JP (2011) Rhodotorula Harrison (1928). In: Kurtzman, CP, Fell, JW, Boekhout, T (Edn) the yeasts: a taxonomic study. 5th edition. Elsevier, Amsterdam, pp 1873–1927. https://doi.org/10.1016/B978-0-444-52149-1.00155-5

  53. Statzell-Tallman A, Fell JW. Kwoniella Statzell-Tallman & Fell (2007). In: Kurtzman, CP, Fell, JW, Boekhout, T (Edn) the yeasts: a taxonomic study. 5th edition. Elsevier, Amsterdam, pp 1481–1484. https://doi.org/10.1016/B978-0-444-52149-1.00119-1

  54. Wang SA, Bay FY (2008) Saccharomyces arboricolus sp. nov., a yeast species from tree bark. Int J Syst Evol Microbiol 58:510–514. https://doi.org/10.1099/ijs.0.65331-0

    Article  CAS  Google Scholar 

  55. Brandão LR, Libkind D, Vaz ABM, Espirito Santo LC, Moliné M, de Garcia V, van Brook M, Rosa CA (2011) Yeasts from an oligotrophic lake in Patagonia (Argentina): diversity, distribution and synthesis of photoprotective compounds and extracellular enzymes. FEMS Microbiol Ecol 73:1–13. https://doi.org/10.1111/j.1574-6941.2010.01030.x

    Article  CAS  Google Scholar 

  56. Lachance MA (2013) The biodiversity, ecology, and biogeography of ascomycetous yeasts. In: Martin, F (Edn) The Ecological Genomics of Fungi pp 355–370 https://doi.org/10.1002/9781118735893.ch16

  57. Dézerald O, Talaga S, Leroy C, Carrias J-F, Corbara B, Dejean A, Céréghino R (2014) Environmental determinants of macroinvertebrate diversity in small water bodies: insights from tank-bromeliads. Hydrobiologia 723:77–83. https://doi.org/10.1007/s10750-013-1464-2

    Article  Google Scholar 

  58. Blackwell M (2017) Made for each other: ascomycete yeasts and insects. Microbiology Spectrum 5, FUNK-0081-2016. https://doi.org/10.1128/microbiolspec.FUNK-0081-2016

  59. Lachance M-A, Starmer WT, Rosa CA, Bowles JM, Barker JSF, Janzen DH (2001) Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Res 1:1–8. https://doi.org/10.1111/j.1567-1364.2001.tb00007.x

    Article  CAS  Google Scholar 

  60. Aanen DK, Boomsma JJ (2005) Evolutionary dynamics of the mutualistic symbiosis between fungus-growing termites and Termitomyces fungi in Vega FE, Blackwell M (ed), insect-fungal associations: ecology and evolution. Oxford University Press, New York, NY, pp 191–210

    Google Scholar 

  61. Greeny HF (2001) The insects of plant-held waters: a review and bibliography. J Trop Ecol 17:241. https://doi.org/10.1017/S026646740100116X

    Article  Google Scholar 

  62. Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Ann Rev Ecol Evol Syst 43:1–23. https://doi.org/10.1146/annurev-ecolsys-110411-160340

    Article  Google Scholar 

  63. Vannette RL, Fukami T (2014) Historical contingency in species interactions: towards niche-based predictions. Ecol Lett 17:115–124. https://doi.org/10.1111/ele.12204

    Article  Google Scholar 

  64. Lopez LCS, Madeira JA, Torres KR, Rios RI (1993) Composição e dinâmica hídrica de phytotelmata de Aechmea nudicaulis e Neoregelia cruenta (Bromeliaceae Bromeloideae) de Restinga de

Download references

Permissions for collection

According to ICMBio instructions, no special permission is required for collection of microbiological samples. Document 53301 was voluntarily registered by PB Morais in SISBIO as registry of collection of fungal samples.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Francisca Maria Sousa. The first draft of the manuscript was written by Paula Benevides de Morais, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paula B. Morais.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Derlene Attili Agellis.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morais, P.B., de Sousa, F.M.P. & Rosa, C.A. Yeast in plant phytotelmata: Is there a “core” community in different localities of rupestrian savannas of Brazil?. Braz J Microbiol 51, 1209–1218 (2020). https://doi.org/10.1007/s42770-020-00286-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00286-1

Keywords

Navigation