Skip to main content
Log in

The correlation analyses of bacterial community composition and spatial factors between freshwater and sediment in Poyang Lake wetland by using artificial neural network (ANN) modeling

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

As one of the most important components of the lake ecosystem, microorganisms from the freshwater and sediment play an important role in many ecological processes. However, the difference and correlation of bacterial community between these two niches were not clear. This study investigated the diversity of microbial community of freshwater and sediment samples from fifteen locations in Poyang Lake wetland. The correlation between the bacterial community and physicochemical property of Poyang Lake wetland was analyzed by artificial neural network (ANN). Our results demonstrated that the freshwater and sediment bacterial community were dominated by groups of the Bacteroidetes (23.33%) and β-Proteobacteria (22.54%) separately, whereas, Canalipalpata, Bacillariophyta, Gemmatimonadetes, and Verrucomicrobia were detected in freshwater niches only. Phylogenetic analysis further indicated that bacterial composition in freshwater significantly differed with the sediment niches. There are 34 unique species accounted for 85% in fresh water samples and 28 unique species accounted for 82% in sediment samples. Cluster analysis further proved that all the samples from freshwater niches clustered closely together, far from the rest sediment samples. ANN analysis revealed that the freshwater with high N and P nutrients will greatly increase the diversity of the bacterial communities. In general, both environmental physicochemical properties, not each factor independently, contributed to the shift in the bacterial community structure. The five tributaries (Gan, Fu, Xin, Rao, Xiu Rivers) play a vital role in shaping the bacterial communities of Poyang Lake. This study provides new insights for understanding of microbial community compositions and structures of Poyang Lake wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DGGE:

Denaturing gradient gel electrophoresis

WD:

Water depth

TRA:

Transparency

TEM:

Water temperature

NTU:

Turbidity

DO:

Dissolved oxygen

CON:

Conductivity

ORP:

Oxidation-reduction potential

PAR:

Photosynthetically active radiation

CHL:

Chlorophyll content

TDS:

Total dissolved solid

SAL:

Salinity

References

  1. Ding X, Peng XJ, Jin BS, Xiao M, Chen JK, Li B, Fang CM, Nie M (2015) Spatial distribution of bacterial communities driven by multiple environmental factors in a beach wetland of the largest freshwater lake in China. Front Microbiol 6:129. https://doi.org/10.3389/fmicb.2015.00129

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zhang H, Wan Z, Ding M, Wang P, Xu X, Jiang Y (2018) Inherent bacterial community response to multiple heavy metals in sediment from river-lake systems in the Poyang Lake, China. Ecotoxicol Environ Saf 165:314–324. https://doi.org/10.1016/j.ecoenv.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  3. Zhang H, Jiang Y, Ding M, Xie Z (2017) Level, source identification, and risk analysis of heavy metal in surface sediments from river-lake ecosystems in the Poyang Lake, China. Environ Sci Pollut Res Int 24(27):21902–21916. https://doi.org/10.1007/s11356-017-9855-y

    Article  CAS  PubMed  Google Scholar 

  4. Wurzbacher CM, Bärlocher F, Grossart HP (2010) Fungi in lake ecosystems. Aquat Microb Ecol 59:125–149. https://doi.org/10.3354/ame01385

    Article  Google Scholar 

  5. Sekiguchi H, Watanabe M, Nakahara T, Xu B, Uchiyama H (2002) Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol 68(10):5142–5150. https://doi.org/10.1128/aem.68.10.5142-5150.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qian J, Zhang M, Niu J, Fu X, Pei X, Chang X, Wei L, Liu R, Chen G-H, Jiang F (2019) Roles of sulfite and internal recirculation on organic compound removal and the microbial community structure of a sulfur cycle-driven biological wastewater treatment process. Chemosphere 226:825–833. https://doi.org/10.1016/j.chemosphere.2019.03.139

    Article  CAS  PubMed  Google Scholar 

  7. Johnson D, Anderson D, McGrath S (2005) Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol Biochem 37(12):2334–2336. https://doi.org/10.1016/j.soilbio.2005.04.001

    Article  CAS  Google Scholar 

  8. Manier N, Brulle F, Le Curieux F, Vandenbulcke F, Deram A (2012) Biomarker measurements in Trifolium repens and Eisenia fetida to assess the toxicity of soil contaminated with landfill leachate: a microcosm study. Ecotoxicol Environ Saf 80:339–348. https://doi.org/10.1016/j.ecoenv.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  9. Huang J, Gao J, Zhang Y (2015) Combination of artificial neural network and clustering techniques for predicting phytoplankton biomass of Lake Poyang, China. Limnology 16(3):179–191. https://doi.org/10.1007/s10201-015-0454-7

    Article  Google Scholar 

  10. Sheng P, Yu Y, Tian X, Wang D, Zhang Z, Ding J (2015) Diversity of ammonia-oxidising bacteria and archaea in seven different estuarine sediments from Poyang Lake. Mar Freshw Res 67:1897. https://doi.org/10.1071/mf15129

    Article  Google Scholar 

  11. Wang S-r, Meng W, X-c J, Zheng B-h, Zhang L, H-y X (2015) Ecological security problems of the major key lakes in China. Environ Earth Sci 74(5):3825–3837. https://doi.org/10.1007/s12665-015-4191-3

    Article  Google Scholar 

  12. Zhang D, Liao Q, Zhang L, Wang D, Luo L, Chen Y, Zhong J, Liu J (2015) Occurrence and spatial distributions of microcystins in Poyang Lake, the largest freshwater lake in China. Ecotoxicology 24(1):19–28. https://doi.org/10.1007/s10646-014-1349-9

    Article  CAS  PubMed  Google Scholar 

  13. Guo H, Hu Q, Jiang T (2008) Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China. J Hydrol 355(1–4):106–122. https://doi.org/10.1016/j.jhydrol.2008.03.020

    Article  Google Scholar 

  14. Fang J, Wang Z, Zhao S, Li Y, Tang Z, Yu D, Ni L, Liu H, Xie P, Da L, Li Z, Zheng C (2006) Biodiversity changes in the lakes of the Central Yangtze. Front Ecol Environ 4:369–377

    Article  Google Scholar 

  15. Sun R, Belcher RW, Liang J, Wang L, Thater B, Crowley DE, Wei G (2015) Effects of cowpea (Vigna unguiculata) root mucilage on microbial community response and capacity for phenanthrene remediation. J Environ Sci (China) 33:45–59. https://doi.org/10.1016/j.jes.2014.11.013

    Article  CAS  Google Scholar 

  16. Sheng P, Yu Y, Zhang G, Huang J, He L, Ding J (2016) Bacterial diversity and distribution in seven different estuarine sediments of Poyang Lake, China. Environ Earth Sci 75(6). https://doi.org/10.1007/s12665-016-5346-6

  17. Kou W, Zhang J, Lu X, Ma Y, Mou X, Wu L (2016) Identification of bacterial communities in sediments of Poyang Lake, the largest freshwater lake in China. SpringerPlus 5:401. https://doi.org/10.1186/s40064-016-2026-7

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu L, Ge G, Zhu G, Gong S, Li S, Wan J (2012) Diversity and composition of the bacterial community of Poyang Lake (China) as determined by 16S rRNA gene sequence analysis. World J Microbiol Biotechnol 28(1):233–244. https://doi.org/10.1007/s11274-011-0812-5

    Article  CAS  PubMed  Google Scholar 

  19. Huang X, Hu B, Wang P, Chen X, Xu B (2016) Microbial diversity in lake–river ecotone of Poyang Lake, China. Environ Earth Sci 75(11). https://doi.org/10.1007/s12665-016-5473-0

  20. Santos EC, Armas ED, Crowley D, Lambais MR (2014) Artificial neural network modeling of microbial community structures in the Atlantic Forest of Brazil. Soil Biol Biochem 69:101–109. https://doi.org/10.1016/j.soilbio.2013.10.049

    Article  CAS  Google Scholar 

  21. Mele PM, Crowley DE (2008) Application of self-organizing maps for assessing soil biological quality. Agric Ecosyst Environ 126(3–4):139–152. https://doi.org/10.1016/j.agee.2007.12.008

    Article  Google Scholar 

  22. Wang H-Z, Xu Q-Q, Cui Y-D, Liang Y-L (2007) Macrozoobenthic community of Poyang Lake, the largest freshwater lake of China, in the Yangtze floodplain. Limnology 8(1):65–71. https://doi.org/10.1007/s10201-006-0190-0

    Article  Google Scholar 

  23. Li C-H, Zhou H-W, Wong Y-S, Tam NF-Y (2009) Vertical distribution and anaerobic biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments in Hong Kong, South China. Sci Total Environ 407(21):5772–5779. https://doi.org/10.1016/j.scitotenv.2009.07.034

  24. Chen Y-W, Gao X-Y (2000) Comparison of two methods for phytoplankton Chlorophyll-a concentration measurement. J Lake Sci 12(2):185–188. https://doi.org/10.18307/2000.0215

  25. Association C, Washington D. APHA, APHA (1995) Standard methods for the examination of water and wastewater. American Physical Education Review 24(9):481–486. https://doi.org/10.1080/23267224.1919.10651076

  26. Zeng J, Yang L, Li J, Liang Y, Xiao L, Jiang L, Zhao D (2008) Vertical distribution of bacterial community structure in the sediments of two eutrophic lakes revealed by denaturing gradient gel electrophoresis (DGGE) and multivariate analysis techniques. World J Microbiol Biotechnol 25(2):225–233. https://doi.org/10.1007/s11274-008-9883-3

    Article  CAS  Google Scholar 

  27. Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, Kamagata Y (2005) Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol 71(4):2162–2169. https://doi.org/10.1128/AEM.71.4.2162-2169.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun R, Thater B, Shi P, Wei X, Jiao S, Belcher RW, Crowley DE, Wei G (2015) The effect of cowpea (Vigna unguiculata) with root mucilage on phenanthrene (PHE) dissipation and microbial community composition using phospholipid fatty acid (PLFA) analysis and artificial neural network (ANN) modeling. Int Biodeterior Biodegradation 100:29–37. https://doi.org/10.1016/j.ibiod.2015.01.017

    Article  CAS  Google Scholar 

  29. Zhang J, Yang Y, Zhao L, Li Y, Xie S, Liu YJAM (2015) Distribution of sediment bacterial and archaeal communities in plateau freshwater lakes. Biotechnology 99(7):3291–3302. https://doi.org/10.1007/s00253-014-6262-x

    Article  CAS  Google Scholar 

  30. Zhao D, Huang R, Zeng J, Yan W, Wang J, Ma T, Wang M, Wu QL (2012) Diversity analysis of bacterial community compositions in sediments of urban lakes by terminal restriction fragment length polymorphism (T-RFLP). World J Microbiol Biotechnol 28(11):3159–3170. https://doi.org/10.1007/s11274-012-1126-y

    Article  PubMed  Google Scholar 

  31. Niu Y, Yu H, Jiang X (2015) Within-lake heterogeneity of environmental factors structuring bacterial community composition in Lake Dongting, China. World J Microbiol Biotechnol 31(11):1683–1689. https://doi.org/10.1007/s11274-015-1917-z

    Article  CAS  PubMed  Google Scholar 

  32. Lake PS, Palmer MA, Biro P (2000) Global change and the biodiversity of freshwater ecosystems: impacts on linkages between above-sediment and sediment biota. BioScience 50(12):1099–1107. https://doi.org/10.1641/0006-3568(2000)050[1099:GCATBO]2.0.CO;2

  33. Palmer MA, Covich AP, Lake S, Biro P, Brooks JJ, Cole J, Dahm C, Gibert J, Goedkoop W, Martens K (2000) Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity. BioScience 50(12):1062–1075. https://doi.org/10.1641/0006-3568(2000)050[1062:LBASBA]2.0.CO;2

  34. Kolmonen E, Sivonen K, Rapala J, Haukka K (2004) Diversity of cyanobacteria and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas, Finland. Aquat Microb Ecol 36:201–211. https://doi.org/10.3354/ame036201

    Article  Google Scholar 

  35. Wang C, Liu J, Wang Z, Pei Y (2014) Nitrification in lake sediment with addition of drinking water treatment residuals. Water Res 56:234–245. https://doi.org/10.1016/j.watres.2014.03.012

    Article  CAS  PubMed  Google Scholar 

  36. Qiao Z, Wu Y, Qian J, Hu S, Chan J, Liu X, Sun R, Wang W, Zhou B (2020) A lab-scale study on heterotrophic nitrification-aerobic denitrification for nitrogen control in aquatic ecosystem. Environ Sci Pollut Res Int 27:9307–9317. https://doi.org/10.1007/s11356-019-07551-3

    Article  CAS  PubMed  Google Scholar 

  37. Shen T, Stieglmeier M, Dai J, Urich T, Schleper C (2013) Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Lett 344(2):121–129. https://doi.org/10.1111/1574-6968.12164

    Article  CAS  PubMed  Google Scholar 

  38. Qian J, Zhang M, Wu Y, Niu J, Chang X, Yao H, Hu S, Pei X (2018) A feasibility study on biological nitrogen removal (BNR) via integrated thiosulfate-driven denitratation with anammox. Chemosphere 208:793–799. https://doi.org/10.1016/j.chemosphere.2018.06.060

    Article  CAS  PubMed  Google Scholar 

  39. Zwart G, Crump BC, Agterveld MPK-v, Hagen F, Han S-K (2002) Typical freshwater bacteria:an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155

    Article  Google Scholar 

  40. Haukka K, Kolmonen E, Hyder R, Hietala J, Vakkilainen K, Kairesalo T, Haario H, Sivonen K (2006) Effect of nutrient loading on bacterioplankton community composition in lake mesocosms. Microb Ecol 51(2):137–146. https://doi.org/10.1007/s00248-005-0049-7

    Article  PubMed  Google Scholar 

  41. Van der Gucht K, Vandekerckhove T, Vloemans N, Cousin S, Muylaert K, Sabbe K, Gillis M, Declerk S, De Meester L, Vyverman W (2005) Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microbiol Ecol 53(2):205–220. https://doi.org/10.1016/j.femsec.2004.12.006

    Article  CAS  PubMed  Google Scholar 

  42. Mueller-Spitz SR, Goetz GW, McLellan SL (2009) Temporal and spatial variability in nearshore bacterioplankton communities of Lake Michigan. FEMS Microbiol Ecol 67(3):511–522. https://doi.org/10.1111/j.1574-6941.2008.00639.x

    Article  CAS  PubMed  Google Scholar 

  43. Methe BA, Hiorns WD, Zehr JP (1998) Contrasts between marine and freshwater bacterial community composition: analysis of communities in Lake George and six other Adirondack lakes. Limnol Oceanogr 43(2):368–374

    Article  CAS  Google Scholar 

  44. Allgaier M, Grossart HP (2006) Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Appl Environ Microbiol 72(5):3489–3497. https://doi.org/10.1128/AEM.72.5.3489-3497.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zeng J, Yang L, Du H, Xiao L, Jiang L, Wu J, Wang X (2009) Bacterioplankton community structure in a eutrophic lake in relation to water chemistry. World J Microbiol Biotechnol 25(5):763–772. https://doi.org/10.1007/s11274-008-9946-5

    Article  CAS  Google Scholar 

  46. Al-Kindi S, Abed RMM (2016) Comparing oil degradation efficiency and bacterial communities in contaminated soils subjected to biostimulation using different organic wastes. Water Air Soil Pollut 227(1). https://doi.org/10.1007/s11270-015-2722-x

  47. Chen S, Peng J, Duan G (2015) Enrichment of functional microbes and genes during pyrene degradation in two different soils. J Soils Sediments 16(2):417–426. https://doi.org/10.1007/s11368-015-1204-5

    Article  CAS  Google Scholar 

  48. de Figueiredo DR, Ferreira RV, Cerqueira M, de Melo TC, Pereira MJ, Castro BB, Correia A (2012) Impact of water quality on bacterioplankton assemblage along Certima River basin (central western Portugal) assessed by PCR-DGGE and multivariate analysis. Environ Monit Assess 184(1):471–485. https://doi.org/10.1007/s10661-011-1981-2

    Article  CAS  PubMed  Google Scholar 

  49. Jin X, Ma Y, Kong Z, Kou W, Wu L (2017) The variation of sediment bacterial community in response to anthropogenic disturbances of Poyang Lake, China. Wetlands. https://doi.org/10.1007/s13157-017-0909-1

  50. Qiao Z, Sun R, Wu Y, Hu S, Liu X, Chan J (2020) Microbial heterotrophic nitrification-aerobic denitrification dominates simultaneous removal of aniline and ammonium in aquatic ecosystems. Water Air Soil Pollut 231(3). https://doi.org/10.1007/s11270-020-04476-3

  51. Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109(50):20292–20297. https://doi.org/10.1073/pnas.1108756108

    Article  PubMed  Google Scholar 

  52. Lindstrom ES, Kamst-Van Agterveld MP, Zwart G (2005) Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl Environ Microbiol 71(12):8201–8206. https://doi.org/10.1128/AEM.71.12.8201-8206.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin X, Green S, Tfaily MM, Prakash O, Konstantinidis KT, Corbett JE, Chanton JP, Cooper WT, Kostka JE (2012) Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. Appl Environ Microbiol 78(19):7023–7031. https://doi.org/10.1128/AEM.01750-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xing P, Kong F (2007) Intra-habitat heterogeneity of environmental factors regulating bacterioplankton community composition in Lake Taihu, China. Aquat Microb Ecol 48:113–122

    Article  Google Scholar 

  55. Wu QL, Chen Y, Xu K, Liu Z, Hahn MW (2007) Intra-habitat heterogeneity of microbial food web structure under the regime of eutrophication and sediment resuspension in the large subtropical shallow Lake Taihu, China. Hydrobiologia 581(1):241–254. https://doi.org/10.1007/s10750-006-0500-x

    Article  CAS  Google Scholar 

  56. Tang X, Gao G, Qin B, Zhu L, Chao J, Wang J, Yang G (2009) Characterization of bacterial communities associated with organic aggregates in a large, shallow, eutrophic freshwater lake (Lake Taihu, China). Microb Ecol 58(2):307–322. https://doi.org/10.1007/s00248-008-9482-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the anonymous reviewers and the editor for their constructive suggestions and professional editing.

Funding

This work was financially supported by the National Natural Science Foundation of China (Program No. 41601338), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ4019 and 2020JM-110), the Fundamental Research Funds for the Central Universities (Program No. 3102018zy042), and National Training Programs of Innovation and Entrepreneurship for Undergraduates (S201910699176).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaoguo Wu or Ruiwu Wang.

Additional information

Responsible Editor: Lucy Seldin.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Tu, Z., Fan, L. et al. The correlation analyses of bacterial community composition and spatial factors between freshwater and sediment in Poyang Lake wetland by using artificial neural network (ANN) modeling. Braz J Microbiol 51, 1191–1207 (2020). https://doi.org/10.1007/s42770-020-00285-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00285-2

Keywords

Navigation