Skip to main content

Advertisement

Log in

Human serum proteins bind to Sporothrix schenckii conidia with differential effects on phagocytosis

  • Bacterial and Fungal Pathogenesis - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Serum is an important source of proteins that interact with pathogens. Once bound to the cell surface, serum proteins can stimulate the innate immune system. The phagocytosis of Sporothrix schenckii conidia by human macrophages is activated through human serum opsonisation. In this study, we have attempted to characterise human blood serum proteins that bind to the cell wall of S. schenckii conidia. We systematically observed the same four proteins independent of the plasma donor: albumin, serum amyloid protein (SAP), α-1 antitrypsin (AAT), and transferrin were identified with the help of tandem mass spectrometry. Phagocytosis depended on the concentration of the SAP or α-1 antitrypsin that was used to opsonise the conidia; however, transferrin or albumin did not have any effect on conidia internalisation. The presence of mannose did not affect macrophage phagocytosis of the conidia opsonised with SAP or α-1 antitrypsin, which suggests that these proteins are not recognised by the mannose receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Conceição-Silva F, Morgado F (2018) Immunopathogenesis of human sporotrichosis: what we already know. J Fungi (Basel) 4:89. https://doi.org/10.3390/jof4030089

    Article  CAS  Google Scholar 

  2. Zhang Y, Hagen F, Stielow B, Rodrigues AM, Samerpitak K, Zhou X, Feng P, Yang L, Chen M, Deng S, Li S, Liao W, Li R, Li F, Meis JF, Guarro J, Teixeira M, al-Zahrani HS, de Camargo ZP, Zhang L, de Hoog GS (2015) Phylogeography and evolutionary patterns in Sporothrix spanning more than 14 000 human and animal case reports. Persoonia 35:1–20. https://doi.org/10.3767/003158515x687416

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barros MB, Paes RD, Schubach AO (2011) Sporothrix schenckii and Sporotrichosis. Clin Microbiol Rev 24:633–654. https://doi.org/10.1128/cmr.00007-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schubach A, Schubach TMP, Barros MBDL, Wanke B (2005) Cat-transmitted Sporotrichosis, Rio de Janeiro, Brazil. Emerg Infect Dis 11:1952–1954. https://doi.org/10.3201/eid1112.040891

    Article  PubMed  PubMed Central  Google Scholar 

  5. Morgado FN, Schubach AO, Pimentel MI, Lyra MR, Vasconcellos ÉCF, Valete-Rosalino CM, Conceição-Silva F (2016) Is there any difference between the in situ and systemic IL-10 and IFN-γ production when clinical forms of cutaneous sporotrichosis are compared? PLoS One 11:e0162764. https://doi.org/10.1371/journal.pone.0162764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sivagnanam S, Bannan AM, Chen SC-A, Ralph AP (2012) Sporotrichosis (Sporothrix schenckii infection) in the New South Wales Mid-North Coast, 2000–2010. Med J Aust 196:588–590. https://doi.org/10.5694/mja11.10755

    Article  PubMed  Google Scholar 

  7. Orofino-Costa R, Macedo PMD, Rodrigues AM, Bernardes-Engemann AR (2017) Sporotrichosis: an update on epidemiology, etiopathogenesis, laboratory and clinical therapeutics. An Bras Dermatol 92:606–620. https://doi.org/10.1590/abd1806-4841.2017279

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hiruma M, Kawada A, Noda T, Yamazaki M, Ishibashi A (2009) Tissue response in sporotrichosis: light and electron microscopy studies. Mycoses 35:35–41. https://doi.org/10.1111/j.1439-0507.1992.tb00816.x

    Article  Google Scholar 

  9. Guzman-Beltran S, Perez-Torres A, Coronel-Cruz C, Torres-Guerrero H (2012) Phagocytic receptors on macrophages distinguish between different Sporothrix schenckii morphotypes. Microbes Infect 14:1093–1101. https://doi.org/10.1016/j.micinf.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  10. Xolalpa W, Vallecillo AJ, Lara M et al (2007) Identification of novel bacterial plasminogen-binding proteins in the human pathogen Mycobacterium tuberculosis. Proteomics 7:3332–3341. https://doi.org/10.1002/pmic.200600876

    Article  CAS  PubMed  Google Scholar 

  11. Brown EJ (1995) Monocytes–derived macrophages. Wilson L, Matsudaira PT, Russell DG, Russell DG (1995) Microbes as Tools for Cell Biology. ISBN: 9780125641463)

  12. Neves CR, Buskermolen J, Roffel S et al (2019) Human saliva stimulates skin and oral wound healing in vitro. J Tissue Eng Regen Med. https://doi.org/10.1002/term.2865

  13. Gordon S (2016) Phagocytosis: an immunobiologic process. Immunity 44:463–475. https://doi.org/10.1016/j.immuni.2016.02.026

    Article  CAS  PubMed  Google Scholar 

  14. Greenberg S (1995) Signal transduction of phagocytosis. Trends Cell Biol 5:93–99. https://doi.org/10.1016/s0962-8924(00)88957-6

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Z, Xu M-J, Gao B (2015) Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol 13:301–315. https://doi.org/10.1038/cmi.2015.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. McCarthy C, Saldova R, Wormald MR, Rudd PM, McElvaney NG, Reeves EP (2014) The role and importance of glycosylation of acute phase proteins with focus on Alpha-1 antitrypsin in acute and chronic inflammatory conditions. J Proteome Res 13:3131–3143. https://doi.org/10.1021/pr500146y

    Article  CAS  PubMed  Google Scholar 

  17. Yuste J, Botto M, Bottoms SE, Brown JS (2007) Serum amyloid P aids complement-mediated immunity to Streptococcus pneumoniae. PLoS Pathog 3:e120–e1219. https://doi.org/10.1371/journal.ppat.0030120

    Article  CAS  PubMed Central  Google Scholar 

  18. Baltz ML, Caspi D, Evans DJ, Rowe IF, Hind CRK, Pepys MB (1986) Circulating serum amyloid P component is the precursor of amyloid P component in tissue amyloid deposits. Clin Exp Immunol 66:691–700

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pepys MB. 1994. Amyloidosis, p 637–655. In Frank MM, Austen KF, Claman HN, Unanue ER (ed), Samter’s immunological diseases, ed 5. Little, Brown Boston)

  20. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. https://doi.org/10.1146/annurev.biochem75.101304.123901

    Article  CAS  PubMed  Google Scholar 

  21. Ochrietor JD, Harrison KA, Zahedi K, Mortensen RF (2000) Role of Stat3 and C/ebp in cytokine-dependent expression of the mouse serum amyloid P-component (Sap) and C-reactive protein (Crp) genes. Cytokine 12:888–899. https://doi.org/10.1006/cyto.2000.0668

    Article  CAS  PubMed  Google Scholar 

  22. Noursadeghi M, Bickerstaff MCM, Gallimore JR, Herbert J, Cohen J, Pepys MB (2000) Role of serum amyloid P component in bacterial infection: protection of the host or protection of the pathogen. Proc Natl Acad Sci 97:14584–14589. https://doi.org/10.1073/pnas.97.26.14584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haas CJCD, Leeuwen EMMV, Bommel TV et al (2000) Serum amyloid P component bound to Gram-negative bacteria prevents lipopolysaccharide-mediated classical pathway complement activation. Infect Immun 68:1753–1759. https://doi.org/10.1128/iai.68.4.1753-1759.2000

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hind CRK, Collins PM, Baltz ML, Pepys MB (1985) Human serum amyloid P component, a circulating lectin with specificity for the cyclic 4,6-pyruvate acetal of galactose: interactions with various bacteria. Biochem J 225:107–111. https://doi.org/10.1042/bj2250107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ma YJ, Doni A, Skjoedt M-O, Honoré C, Arendrup M, Mantovani A, Garred P (2010) Heterocomplexes of mannose-binding lectin and the pentraxins PTX3 or serum amyloid P component trigger cross-activation of the complement system. J Biol Chem 286:3405–3417. https://doi.org/10.1074/jbc.m110.190637

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gilchrist KB, Garcia MC, Sobonya R, Lipke PN, Klotz SA (2012) New features of invasive candidiasis in humans: amyloid formation by fungi and deposition of serum amyloid P component by the host. J Infect Dis 206:1473–1478. https://doi.org/10.1093/infdis/jis464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garcia-Sherman MC, Lundberg T, Sobonya RE et al (2015) A unique biofilm in human deep mycoses: fungal amyloid is bound by host serum amyloid P component. NPJ Biofilms Microbiomes. https://doi.org/10.1038/npjbiofilms.2015.9

  28. Behrens NE, Lipke PN, Pilling D et al (2019) Serum amyloid P component binds fungal surface amyloid and decreases human macrophage phagocytosis and secretion of inflammatory cytokines. mBio. https://doi.org/10.1128/mbio.00218-19

  29. Klotz SA, Sobonya RE, Lipke PN, Garcia-Sherman MC (2016) Serum amyloid P component and systemic fungal infection: does it protect the host or is it a trojan horse? Open Forum Infect Dis 3. https://doi.org/10.1093/ofid/ofw166

  30. Jonigk D, Al-Omari M, Maegel L et al (2013) Anti-inflammatory and immunomodulatory properties of 1-antitrypsin without inhibition of elastase. Proc Natl Acad Sci 110:15007–15012. https://doi.org/10.1073/pnas.1309648110

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jiang D, Persinger R, Wu Q, Gross A, Chu H (2013) α1-antitrypsin promotes SPLUNC1-mediated lung defense against Pseudomonas aeruginosa infection in mice. Respir Res 14:122. https://doi.org/10.1186/1465-9921-14-122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pott GB, Beard KS, Bryan CL, Merrick DT, Shapiro L (2013) Alpha-1 antitrypsin reduces severity of pseudomonas pneumonia in mice and inhibits epithelial barrier disruption and pseudomonas invasion of respiratory epithelial cells. Front Public Health 1. https://doi.org/10.3389/fpubh.2013.00019

  33. Shapiro L, Pott GB, Ralston AH (2001) Alpha-1-antitrypsin inhibits human immunodeficiency virus type 1. FASEB J 15:115–122. https://doi.org/10.1096/fj.00-0311com

    Article  CAS  PubMed  Google Scholar 

  34. Zhou X, Shapiro L, Fellingham G, Willardson BM, Burton GF (2011) HIV replication in CD4 T lymphocytes in the presence and absence of follicular dendritic cells: inhibition of replication mediated by α-1-antitrypsin through altered IκBα ubiquitination. J Immunol 186:3148–3155. https://doi.org/10.4049/jimmunol.1001358

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledege the skilful and invaluable assistance of Gabriela Perera Slazar, Unidad de Investigación, Marco Gudiño Zayas and Angelica Serrano Ahumada, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, UNAM. This work ws supported by DGAPA IN214013, UNAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haydee Torres Guerrero.

Additional information

Responsible Editor: Sandro Rogerio de Almeida.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzman Beltrán, S., Sanchez Morales, J., González Canto, A. et al. Human serum proteins bind to Sporothrix schenckii conidia with differential effects on phagocytosis. Braz J Microbiol 52, 33–39 (2021). https://doi.org/10.1007/s42770-020-00276-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00276-3

Keywords

Navigation