Skip to main content
Log in

Teschovirus and other swine and human enteric viruses in Brazilian watersheds impacted by swine husbandry

  • Environmental Microbiology - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Several emerging viral agents related to gastroenteritis are distributed in human and animal populations and may contaminate the environment due to anthropic activities. The objective of this study was to analyze the seasonal contamination by enteric virus and coliforms in water from streams in the Vale do Taquari, draining a large number of pig farms. Microbiological contamination was evidenced by the detection of total and thermotolerant coliforms, reaching their peak in December. Hepatitis E virus (HEV), Enterovirus-G (EV-G) genome, and Sapelovirus-A (SV-A) genome were not detected. On the other hand, Rotavirus (RV) was detected in 3% (1/32) of the samples, whereas Teschovirus-A (PTV) was detected in 6% (2/32). This is the first detection of PTV in environmental samples in Brazil, pointing that the virus is being shedded from swine herds to watersheds. Human mastadenovirus (HAdV) was the most frequent detected viral agent in 9.3% (3/32) with values of 2.54 × 105, 7.13 × 104, and 3.09 × 105 genome copies/liter (gc/L). The circulation of coliforms and viral pathogens is noticeable due to anthropic activities and to the management of animal waste from the pig farming. In this way, enteric viruses can assist in monitoring the quality of watersheds and in tracking sources of contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Espinosa AC, Mazari-Hiriart M, Espinosa R, Maruri-Avidal L, Méndez E, Arias CF (2008) Infectivity and genome persistence of rotavirus and astrovirus in groundwater and surface water. Water Res 42(10):2618–2628

    Article  CAS  Google Scholar 

  2. Victoria M, Tort LL, García M, Lizasoain A, Maya L, Leite JPG et al (2014) Assessment of gastroenteric viruses from wastewater directly discharged into Uruguay River. Uruguay Food Environ Virol 6(2):116–124

    Article  CAS  Google Scholar 

  3. Seitz SR, Leon JS, Schwab KJ, Lyon GM, Dowd M, McDaniels M et al (2011) Norovirus infectivity in humans and persistence in water. Appl Environ Microbiol 77(19):6884–6888

    Article  CAS  Google Scholar 

  4. Fong TT, Lipp EK (2005) Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 69(2):357–371

    Article  CAS  Google Scholar 

  5. Shan T, Li L, Simmonds P, Wang C, Moeser A, Delwart E (2011) The fecal virome of pigs on a high-density farm. J Virol 85(22):11697–11708

    Article  CAS  Google Scholar 

  6. Teunis PF, Moe CL, Liu P, Miller ES, Lindesmith L, Baric RS et al (2008) Norwalk virus: how infectious is it? J Med Virol 80(8):1468–1476

    Article  Google Scholar 

  7. Jiménez-Clavero MA, Fernández C, Ortiz JA, Pro J, Carbonell G, Tarazona JV et al (2003) Teschoviruses as indicators of porcine fecal contamination of surface water. Appl Environ Microbiol 69(10):6311–6315

    Article  Google Scholar 

  8. Lan D, Ji W, Yang S, Cui L, Yang Z, Yuan C et al (2011) Isolation and characterization of the first Chinese porcine sapelovirus strain. Arch Virol 156(9):1567

    Article  CAS  Google Scholar 

  9. Donin DG, de Arruda LR, Alfieri AF, Alberton GC, Alfieri AA (2014) First report of porcine teschovirus (PTV), porcine sapelovirus (PSV) and Enterovirus G (EV-G) in pig herds of Brazil. Trop Anim Health Prod 46(3):523–528

    Article  Google Scholar 

  10. Donin DG, Leme RDA, Alfieri AF, Alberton GC, Alfieri AA (2015) Molecular survey of porcine teschovirus, porcine sapelovirus, and enterovirus G in captive wild boars (Sus scrofa scrofa) of Paraná state, Brazil. Pesqui Vet Bras 35(5):403–408

    Article  Google Scholar 

  11. Van Dung N, Anh PH, Van Cuong N, Hoa NT, Carrique-Mas J, Hien VB et al (2014) Prevalence, genetic diversity and recombination of species G enteroviruses infecting pigs in Vietnam. J Gen Virol 95(3):549–556

    Article  Google Scholar 

  12. Sinclair RG, Jones EL, Gerba CP (2009) Viruses in recreational water-borne disease outbreaks: a review. J Appl Microbiol 107(6):1769–1780

    Article  CAS  Google Scholar 

  13. Haramoto E, Katayama H, Oguma K, Ohgak S (2007) Quantitative analysis of human enteric adenoviruses in aquatic environments. J Appl Microbiol 103(6):2153–2159

    Article  CAS  Google Scholar 

  14. Lee C, Kim SJ (2008) Molecular detection of human enteric viruses in urban rivers in Korea. J Microbiol Biotechnol 18(6):1156–1163

    CAS  PubMed  Google Scholar 

  15. Ruskowski, L. Avaliação dos métodos de ultracentrifugação e adsorção-eluição para concentração viral em amostras de água. 2015. Monografia ( Trabalho de Conclusão do curso de Biomedicina)- Universidade Feevale, Novo Hamburgo-RS, 2015

  16. Heldt FH, Staggmeier R, Gularte JS, Demoliner M, Henzel A, Spilki FR (2016) Hepatitis E virus in surface water, sediments, and pork products marketed in southern Brazil. Food Environ Virol 8(3):200–205

    Article  CAS  Google Scholar 

  17. Spilki FR, Luz RBD, Fabres RB, Soliman MC, Kluge M, Fleck JD et al (2013) Detection of human adenovirus, rotavirus and enterovirus in water samples collected on dairy farms from Tenente Portela, northwest of Rio Grande do Sul, Brazil. Braz J Microbiol 44(3):953–957

    Article  Google Scholar 

  18. Wolf S, Hewitt J, Greening GE (2010) Viral multiplex quantitative PCR assays for tracking sources of fecal contamination. Appl Environ Microbiol 76(5):1388–1394

    Article  CAS  Google Scholar 

  19. Gentry-Shields J, Myers K, Pisanic N, Heaney C, Stewart J (2015) Hepatitis E virus and coliphages in waters proximal to swine concentrated animal feeding operations. Sci Total Environ 505:487–493

    Article  CAS  Google Scholar 

  20. Boros A, Nemes C, Pankovics P, Bíró H, Kapusinszky B, Delwart E et al (2012) Characterization of a novel porcine enterovirus in wild boars in Hungary. Arch Virol 157(5):981–986

    Article  CAS  Google Scholar 

  21. Chiu SC, Hu SC, Chang CC, Chang CY, Huan CC, Pang VF et al (2012) The role of porcine teschovirus in causing diseases in endemically infected pigs. Vet Microbiol 161(1):88–95

    Article  Google Scholar 

  22. Qiu Z, Wang Z, Zhang B, Zhang J, Cui S (2013) The prevalence of porcine teschovirus in the pig population in northeast of China. J Virol Methods 193(1):209–214

    Article  CAS  Google Scholar 

  23. Ventura A, Gonzalez W, Barrette R, Swenson S, Bracht A, Rowland J et al (2012) Virus and antibody diagnostics for swine samples of the Dominican Republic collected in regions near the border to Haiti. ISRN Virology 2013

  24. Buitrago D, Cano-Gómez C, Agüero M, Fernandez-Pacheco P, Gómez-Tejedor C, Jiménez-Clavero MÁ (2010) A survey of porcine picornaviruses and adenoviruses in fecal samples in Spain. J Vet Diagn Investig 22(5):763–766

    Article  Google Scholar 

  25. Vasconcelos J, Soliman MC, Staggemeier R, Heinzelmann L, Weidlich L, Cimirro R et al (2015) Molecular detection of hepatitis E virus in feces and slurry from swine farms, Rio Grande do Sul, Southern Brazil. Arq Bras Med Vet Zootec 67(3):777–782

    Article  Google Scholar 

  26. Steyer A, Naglič T, Močilnik T, Poljšak-Prijatelj M, Poljak M (2011) Hepatitis E virus in domestic pigs and surface waters in Slovenia: prevalence and molecular characterization of a novel genotype 3 lineage. Infect Genet Evol 11(7):1732–1737

    Article  CAS  Google Scholar 

  27. Hsu BM, Chen CH, Wan MT (2008) Prevalence of enteroviruses in hot spring recreation areas of Taiwan. FEMS Immunol Med Microbiol 52(2):253–259

    Article  CAS  Google Scholar 

  28. Apostol LNG, Imagawa T, Suzuki A, Masago Y, Lupisan S, Olveda R et al (2012) Genetic diversity and molecular characterization of enteroviruses from sewage-polluted urban and rural rivers in the Philippines. Virus Genes 45(2):207–217

    Article  CAS  Google Scholar 

  29. Sirikanchana K, Shisler JL, Marinas BJ (2008) Effect of exposure to UV-C irradiation and monochloramine on adenovirus serotype 2 early protein expression and DNA replication. Appl Environ Microbiol 74(12):3774–3782

    Article  CAS  Google Scholar 

  30. Vivier JC, Ehlers MM, Grabow WOK (2004) Detection of enteroviruses in treated drinking water. Water Res 38(11):2699–2705

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Feevale University, the Coordination for the Improvement of Higher Level Personnel (CAPES), Rio Grande do Sul Secretariat for Economic Development, Science and Technology, and the Brazilian National Research Council (CNPq). FRS is a CNPq fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Souza.

Additional information

Responsible Editor: Mauricio Nogueira.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, F.G., Gularte, J.S., Demoliner, M. et al. Teschovirus and other swine and human enteric viruses in Brazilian watersheds impacted by swine husbandry. Braz J Microbiol 51, 711–717 (2020). https://doi.org/10.1007/s42770-019-00197-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00197-w

Keywords

Navigation