Protein compounds of Bacillus subtilis with in vitro antifungal activity against Pseudocercospora fijiensis (Morelet)

  • Mileidy Cruz-MartínEmail author
  • Eilyn Mena
  • Mayra Acosta-Suárez
  • Tatiana Pichardo
  • Eloisa Rodriguez
  • Yelenys Alvarado-Capó
Environmental Microbiology - Short Communication


The metabolites of Bacillus subtilis CCIBP-M27 were evaluated as an antagonist of Pseudocercospora fijiensis. The culture filtrate did not inhibit ascospore germination but significantly reduced conidial germination and mycelial growth. Through microscopic analysis, deformations were observed as vacuolization and swelling in P. fijiensis mycelia when exposed to culture filtrate during 48 h. A similar response was induced by peptide-type compounds found on Bacillus subtilis CCIBP-M27 culture filtrate. The results obtained suggest that the in vitro antifungal effect of the strain CCIBP-M27 against P. fijiensis is related to the action of diffused metabolites such as proteins or peptide substances.


Biocontrol Black Sigatoka Metabolites Proteins 



Partial financial support for this work was an output of a scholarship from the Food Security Center from the University of Hohenheim, which is part of the DAAD (German Academic Exchange Service) program “exceed” and in cooperation with the host PhD Blondy Canto Canché at the Centro de Investigación Científica de Yucatán (CICY), México.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Aunpad R, Na-Bangchang K (2007) Pumilicin 4, a novel bacteriocin with anti-MRSA and anti-VRE activity produced by newly isolated bacteria Bacillus pumilus strain WAPB4. Curr Microbiol 55(4):308–313CrossRefPubMedGoogle Scholar
  2. 2.
    Ceballos I, Mosquera S, Angulo M, Mira J, Argel L, Uribe-Velez D et al (2012) Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microb Ecol 64:641–653CrossRefPubMedGoogle Scholar
  3. 3.
    Serrano L, Manker D, Brandi F, Cali T (2013) The use of Bacillus Subtilis QST 713 and Bacillus pumilus QST 2808 as protectant fungicides in conventional application programs for black leaf streak control. Acta Hortic (ISHS) (986):149–155Google Scholar
  4. 4.
    Edgecomb DW, Manker D (2016) Bacillus subtilis strain QST 713, bacterial disease control in fruit, vegetable and ornamental production. Biocontrol of Bacterial Plant Diseases, 1st Symposium, Mitt Biol Bundesanst Land-Forstwirtsch; 408:167–169Google Scholar
  5. 5.
    Cruz-Martín M, Alvarado-Capó Y, Acosta-Suárez M, Roque B, Leiva-Mora M (2010) Efecto de filtrados cultivo bacterianos con actividad antifúngica in vitro en la interacción Musa spp.- Mycosphaerella fijiensis. Biotecnología Vegetal 10(2):99–104Google Scholar
  6. 6.
    Krieg NR, Holt J (1984) Bergey’s manual of systematic bacteriology. Williams & Wilkins, New York ISBN: 0683041088Google Scholar
  7. 7.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley and Sons, New York, pp 115–175Google Scholar
  8. 8.
    Cruz-Martín M, Acosta-Suárez M, Mena E, Roque B, Leiva-Mora M, Pichardo T et al (2013) Quantification of Mycosphaerella fijiensis in vitro growth by absorbance readings. Biotecnología Vegetal 13(4):219–224Google Scholar
  9. 9.
    Leiva-Mora M, Portal O, Alvarado-Capó Y, Acosta-Suárez M, Cruz-Martín M, Sánchez-García C et al (2013) Molecular identification of Cuban isolates of Mycosphaerella fijiensis Morelet. Rev Protección Vegetal 28(3):229–231Google Scholar
  10. 10.
    Mosquera O, Echeverry L, Osorio J (2009) Evaluación de la actividad antifúngica de extractos vegetales sobre el hongo Mycosphaerella fijiensis Morelet. Scientia et Technica XV 41:232–236Google Scholar
  11. 11.
    Fouré E (1985) Les cercosporioses du bananier et leurs traitements. Etude de la sensibilité variétale des bananiers et plantains á Mycosphaerella fijiensis Morelet au Gabon. Fruits 40:393–399Google Scholar
  12. 12.
    Acosta-Suárez M, Alvarado-Capó Y, Cruz-Martín M, Leiva M, Roque B (2004) Evaluación en casa de cultivo de la respuesta a la Sigatoka negra de dos cultivares de Musa mediante la inoculación artificial de suspensiones conidiales de Pseudocercospora fijiensis. Biotecnología Vegetal 4(2):77–84Google Scholar
  13. 13.
    Moreno B, Dunn F, Guillén K, Holguín F, Hernández M, Encarnación S et al (2016) Antifungal performance of extracellular chitinases and culture supernatants of Streptomyces galilaeus CFFSUR-B12 against Mycosphaerella fijiensis Morelet. World J Microbiol Biotechnol 32:44. CrossRefGoogle Scholar
  14. 14.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  15. 15.
    Laemmli UK, Favre M (1973) Gel electrophoresis of proteins. J Mol Biol 80:575–599CrossRefPubMedGoogle Scholar
  16. 16.
    Liu Y, Chen Z, Ng TB, Zhang J, Zhou M, Song F, Lu F, Liu Y (2007) Bacisubin, an antifungal protein with ribonuclease and hemaggutinating activities from Bacillus subtilis strain B-916. Peptides 28:553–559CrossRefPubMedGoogle Scholar
  17. 17.
    Senthilkumar M, Govindasamy V, Annapurna K (2007) Role of antibiosis in suppression of charcoal rot disease by soybean endophyte Paenibacillus sp. HKA-15. Curr Microbiol 55(1):25–29CrossRefPubMedGoogle Scholar
  18. 18.
    Zhou W, Huang J, Niu T (2008) Isolation of an antifungal Paenibacillus strain HT16 from locusts and purification of its medium dependent antagonistic component. J Appl Microbiol 105:912–919CrossRefPubMedGoogle Scholar
  19. 19.
    Osorio I, Patiño LF, Bustamante E, Rodríguez PA (2004). Selección y evaluación de bacterias quitinolíticas provenientes de la zona de Urabá para el control de la Sigatoka negra. Boletín Técnico, Asociación de Bananeros de Colombia, 5–8Google Scholar
  20. 20.
    Cristie W (2014). Microbial lipopeptides: structure, occurrence and biology. 1–6
  21. 21.
    Jha S, Joshi S, Geetha SJ (2016) Lipopeptide production by Bacillus subtilis R1 and its possible applications. Braz J Microbiol 47:955–964. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Li L, Ma M, Huang R, Qu Q, Li G, Zhou J, Zhang Q, Lu K, Niu X, Luo J (2012) Induction of Chlamydospore formation in Fusarium by cyclic Lipopeptide antibiotics from Bacillus subtilis C2. J Chem Ecol 38:966–974. CrossRefPubMedGoogle Scholar
  23. 23.
    Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857CrossRefPubMedGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  1. 1.Instituto de Biotecnología de las PlantasUniversidad Central Marta Abreu de Las VillasSanta ClaraCuba

Personalised recommendations