Hydrophobin HFBII-4 from Trichoderma asperellum induces antifungal resistance in poplar

  • Huifang Zhang
  • Shida Ji
  • Ruiting Guo
  • Chang Zhou
  • Yucheng Wang
  • Haijuan Fan
  • Zhihua LiuEmail author
Bacterial, Fungal and Virus Molecular Biology - Research Paper


Herein, the class II hydrophobin gene HFBII-4 was cloned from the biocontrol agent Trichoderma asperellum ACCC30536 and recombinant rHFBII-4 was expressed in Pichia pastoris GS115. Treatment of Populus davidiana × P. alba var. pyramidalis (PdPap poplar) with rHFBII-4 altered the expression levels of genes in the auxin, salicylic acid (SA), and jasmonic acid (JA) signal transduction pathways. Polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) enzyme activities were induced with rHFBII-4. Evans Blue and nitro blue tetrazolium (NBT) staining indicated that cell membrane permeability and reactive oxygen species were lower in the leaves of plants treated with rHFBII-4. The chlorophyll content was higher than that of control at 2–5 days after treatment. Furthermore, poplar seedlings were inoculated with Alternaria alternata, disease symptoms were observed. The diseased area was smaller in leaves induced with rHFBII-4 compared with control. In summary, rHFBII-4 enhances resistance to A. alternata.


Biocontrol Trichoderma sp. Yeast expression Hydrophobin Populus davidiana × P. alba var. pyramidalis 



This work was supported by the National High Technology Research and Development Program (the 13th Five-Year Plan Program) [grant number 2016YFC0501505] and the Fundamental Research Funds of the Central University, China [grant numbers 2572017CA06 and 2572014BA15].

Compliance with ethical standards

Ethical approval

The manuscript does not contain experiments using animal or human studies.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Wösten HA (2001) Hydrophobins: multipurpose proteins. Annu Rev Microbiol 55:625–646CrossRefGoogle Scholar
  2. 2.
    Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29(5):877–896CrossRefGoogle Scholar
  3. 3.
    Huang Y, Mijiti G, Wang ZY, Yu WJ, Fan HJ, Zhang RS, Liu ZH (2015) Functional analysis of the class II hydrophobin gene HFB2-6 from the biocontrol agent Trichoderma asperellum ACCC30536. Microbiol Res 171:8–20CrossRefGoogle Scholar
  4. 4.
    Wessels J, De Vries O, Asgeirsdottir SA, Schuren F (1991) Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 3(8):793–799CrossRefGoogle Scholar
  5. 5.
    Wösten HA, Asgeirsdóttir SA, Krook JH, Drenth JH, Wessels JG (1994) The fungal hydrophobin Sc3p self-assembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic layer. Eur J Cell Biol 63(1):122–129Google Scholar
  6. 6.
    Whiteford JR, Lacroix H, Talbot NJ, Spanu PD (2004) Stage-specific cellular localisation of two hydrophobins during plant infection by the pathogenic fungus Cladosporium fulvum. Fungal Genet Biol 41(6):624–634CrossRefGoogle Scholar
  7. 7.
    Kazmierczak P, Kim DH, Turina M, Van Alfen NK (2005) A hydrophobin of the chestnut blight fungus, Cryphonectria parasitica, is required for stromal pustule eruption. Eukaryot Cell 4(5):931–936CrossRefGoogle Scholar
  8. 8.
    Talbot NJ, Kershaw MJ, Wakley GE, De Vries O, Wessels J, Hamer JE (1996) MPGI encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8(6):985–999CrossRefGoogle Scholar
  9. 9.
    Kim S, Ahn IP, Rho HS, Lee YH (2005) MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol Microbiol 57(5):1224–1237CrossRefGoogle Scholar
  10. 10.
    He RL, Li C, Feng J, Zhang DY (2017) A class II hydrophobin gene, Trhfb3, participates in fungal asexual development of Trichoderma reesei. FEMS Microbiol Lett 364(8)Google Scholar
  11. 11.
    Przylucka A, Akcapinar GB, Chenthamara K, Cai F, Grujic M, Karpenko J, Livoi M, Shen Q, Kubicek CP, Druzhinina IS (2017) HFB7-a novel orphan hydrophobin of the Harzianum and Virens clades of Trichoderma, is involved in response to biotic and abiotic stresses. Fungal Genet Biol 102:63–76CrossRefGoogle Scholar
  12. 12.
    Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7(4):249–258CrossRefGoogle Scholar
  13. 13.
    Dubey MK, Jensen DF, Karlsson M (2014) Hydrophobins are required for conidial hydrophobicity and plant root colonization in the fungal biocontrol agent Clonostachys rosea. BMC Microbiol 14:18CrossRefGoogle Scholar
  14. 14.
    Ruocco M, Lanzuise S, Lombardi N, Woo SL, Vinale F, Marra R, Varlese R, Manganiello G, Pascale A, Scala V, Turrà D, Scala F, Lorito M (2015) Multiple roles and effects of a novel Trichoderma hydrophobin. Mol Plant-Microbe Interact 28(2):167–169CrossRefGoogle Scholar
  15. 15.
    Guzmán-Guzmán P, Alemán-Duarte MI, Delaye L, Herrera-Estrella A, Olmedo-Monfil V (2017) Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet 18:16CrossRefGoogle Scholar
  16. 16.
    Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521CrossRefGoogle Scholar
  17. 17.
    Denancé S-VA, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:155CrossRefGoogle Scholar
  18. 18.
    Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49(1):317–343CrossRefGoogle Scholar
  19. 19.
    Kazan K, Manners JM (2009) Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci 14(7):373–382CrossRefGoogle Scholar
  20. 20.
    Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47(4):289–297CrossRefGoogle Scholar
  21. 21.
    Faisal M, Alatar AA, Ahmad N, Anis M, Hegazy AK (2012) An efficient and reproducible method for in vitro clonal multiplication of Rauvolfia tetraphylla L. and evaluation of genetic stability using DNA-based markers. Appl Biochem Biotechnol 168(7):1739–1752CrossRefGoogle Scholar
  22. 22.
    Higgins DR, Cregg JM (1998) Introduction to Pichia pastoris. Methods Mol Biol 103:1–15Google Scholar
  23. 23.
    Niu BL, Wang DD, Yang YY, Xu HJ, Qiao MQ (2012) Heterologous expression and characterization of the hydrophobin HFBI in Pichia pastoris and evaluation of its contribution to the food industry. Amino Acids 43(2):763–771CrossRefGoogle Scholar
  24. 24.
    Ji SD, Wang ZY, Fan HJ, Zhang RS, Yu ZY, Wang JJ, Liu ZH (2016) Heterologous expression of the Hsp24 from Trichoderma asperellum improves antifungal ability of Populus transformant Pdpap-Hsp24 s to Cytospora chrysosperma and Alternaria alternata. J Plant Res 129(5):921–933CrossRefGoogle Scholar
  25. 25.
    Yan YH, Li JL, Zhang XQ, Yang WY, Wan Y, Ma YM, Zhu YQ, Peng Y, Huang LK (2014) Effect of naphthalene acetic acid on adventitious root development and associated physiological changes in stem cutting of Hemarthria compressa. PLoS One 9(3):e90700CrossRefGoogle Scholar
  26. 26.
    Wang M, Wu C, Cheng Z, Meng H (2015) Growth and physiological changes in continuously cropped eggplant (Solanum melongena L.) upon relay intercropping with garlic (Allium sativum L.). Front Plant Sci 6:262Google Scholar
  27. 27.
    Lu S, Lu XL, Zhao WL, Liu Y, Wang ZY, Omasa K (2015) Comparing vegetation indices for remote chlorophyll measurement of white poplar and Chinese elm leaves with different adaxial and abaxial surfaces. J Exp Bot 66(18):5625–5637CrossRefGoogle Scholar
  28. 28.
    Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552CrossRefGoogle Scholar
  29. 29.
    Peret B, Swarup K, Ferguson A, Seth M, Yang Y, Dhondt S, James N, Casimiro I, Perry P, Syed A, Yang H, Reemmer J, Venison E, Howells C, Perez-Amador MA, Yun J, Alonso J, Beemster GTS, Laplaze L, Murphy A, Bennett MJ, Nielsen E, Swarup R (2012) AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell 24:2874–2885CrossRefGoogle Scholar
  30. 30.
    Staswick PE (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16(8):2117–2127CrossRefGoogle Scholar
  31. 31.
    Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds TR, Kobayashi Y, Hsu FF, Sharon M, Browse J, He SY, Rizo J, Howe GA, Zheng N (2010) Jasmonate perception by inositol phosphate-potentiated COI1-JAZ co-receptor. Nature 468(7322):400–405CrossRefGoogle Scholar
  32. 32.
    Vom ED, Vom Endt D, Soares e Silva M, Kijne JW, Pasquali G, Memelink J (2007) Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-hook DNA-binding proteins. Plant Physiol 144(3):1680–1689CrossRefGoogle Scholar
  33. 33.
    Mauchmani B, Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8(2):203–212CrossRefGoogle Scholar
  34. 34.
    Druzhinina IS, Shelest E, Kubicek CP (2012) Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiol Lett 337(1):1–9CrossRefGoogle Scholar
  35. 35.
    Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99(4):303–310CrossRefGoogle Scholar
  36. 36.
    Pieterse L-RA, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316CrossRefGoogle Scholar
  37. 37.
    Mou ZL, Fan WH, Dong XN (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113(7):935–944CrossRefGoogle Scholar
  38. 38.
    Van LL, Rep M, Pieterse CM (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44(1):135–162CrossRefGoogle Scholar
  39. 39.
    Yu WJ, Mijiti G, Huang Y, Fan HJ, Wang YC, Liu ZH (2018) Functional analysis of eliciting plant response protein Epl1-Tas from Trichoderma asperellum ACCC30536. Sci Rep 8(1):7974CrossRefGoogle Scholar
  40. 40.
    Pietrowska E, Różalska S, Kaźmierczak A, Nawrocka J, Małolepsza U (2015) Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures—Botrytis cinerea interaction. Protoplasma 252(1):307–319CrossRefGoogle Scholar
  41. 41.
    Ji SD, Wang ZY, Wang JJ, Fan HJ, Wang YC, Liu ZH (2017) Properties analysis of transcription factor gene TasMYB36 from Trichoderma asperellum CBS433.97 and its heterogeneous transformation to improve antifungal ability of Populus. Sci Rep 7:12801CrossRefGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2019

Authors and Affiliations

  • Huifang Zhang
    • 1
  • Shida Ji
    • 1
  • Ruiting Guo
    • 1
  • Chang Zhou
    • 1
  • Yucheng Wang
    • 1
  • Haijuan Fan
    • 1
  • Zhihua Liu
    • 1
    Email author
  1. 1.School of ForestryNortheast Forestry UniversityHarbinChina

Personalised recommendations