Skip to main content

Advertisement

Log in

Genome sequencing of Burkholderia contaminans LTEB11 reveals a lipolytic arsenal of biotechnological interest

  • Bacterial, Fungal and Virus Molecular Biology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Burkholderia contaminans LTEB11 is a Gram-negative betaproteobacterium isolated as a contaminant of a culture in mineral medium supplemented with vegetable oil. Here, we report the genome sequence of B. contaminans LTEB11, identifying and analyzing the genes involved in its lipolytic machinery and in the production of other biotechnological products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5(9):719–729. https://doi.org/10.1046/j.1462-2920.2003.00471.x

    Article  CAS  PubMed  Google Scholar 

  2. Vanlaere E, Baldwin A, Gevers D, Henry D, de Brandt E, LiPuma JJ, Mahenthiralingam E, Speert DP, Dowson C, Vandamme P (2009) Taxon K, a complex within the Burkholderia cepacia complex, comprises at least two novel species, Burkholderia contaminans sp. nov. and Burkholderia lata sp. nov. Int J Syst Evol Microbiol 59(1):102–111. https://doi.org/10.1099/ijs.0.001123-0

    Article  CAS  PubMed  Google Scholar 

  3. Deng P, Wang X, Baird SM, Showmaker KC, Smith L, Peterson DG, Lu S (2016) Comparative genome-wide analysis reveals that Burkholderia contaminans MS14 possesses multiple antimicrobial biosynthesis genes but not major genetic loci required for pathogenesis. Microbiologyopen. 5(3):353–369. https://doi.org/10.1002/mbo3.333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vandamme P, Dawyndt P (2011) Classification and identification of the Burkholderia cepacia complex: past, present and future. Syst Appl Microbiol 34(2):87–95. https://doi.org/10.1016/j.syapm.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  5. Parke JL, Gurian-sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Environ Prot 84(5):1229–1236. https://doi.org/10.1111/j.1540-6296.2010.01192.x

    Article  Google Scholar 

  6. Wattanaphon HT, Kerdsin A, Thammacharoen C, Sangvanich P, Vangnai AS (2008) A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. J Appl Microbiol 105(2):416–423. https://doi.org/10.1111/j.1365-2672.2008.03755.x

    Article  CAS  PubMed  Google Scholar 

  7. Villalobos MC, Goncalves AG, Noseda MN, Mitchell DA, Krieger N (2018) A novel enzymatic method for the synthesis of methyl 6-O-acetyl-α-D-glucopyranoside using a fermented solid containing lipases produced by Burkholderia contaminans LTEB11. Process Biochem 73:86–93. https://doi.org/10.1016/j.procbio.2018.07.023

    Article  CAS  Google Scholar 

  8. Fernandes MLM, Saad EB, Meira JA, Ramos LP, Mitchell DA, Krieger N (2007) Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. J Mol Catal B Enzym 44(1):8–13. https://doi.org/10.1016/j.molcatb.2006.08.004

    Article  CAS  Google Scholar 

  9. Salum TFC, Baron AM, Zago E, Turra V, Baratti J, Mitchell DA, Krieger N (2008) An efficient system for catalyzing ester synthesis using a lipase from a newly isolated Burkholderia cepacia strain. Biocatal Biotransformation 26(3):197–203. https://doi.org/10.1080/10242420701568674

    Article  CAS  Google Scholar 

  10. Baron AM, Barouh N, Barea B, Villeneuve P, Mitchell DA, Krieger N (2014) Transesterification of castor oil in a solvent-free medium using the lipase from Burkholderia cepacia LTEB11 immobilized on a hydrophobic support. Fuel. 117, Part(A:458–462. https://doi.org/10.1016/j.fuel.2013.09.065

    Article  CAS  Google Scholar 

  11. Salum TFC, Villeneuve P, Barea B, Yamamoto CI, Côcco LC, Mitchell DA, Krieger N (2010) Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacia LTEB11. Process Biochem 45(8):1348–1354. https://doi.org/10.1016/j.procbio.2010.05.004

    Article  CAS  Google Scholar 

  12. Soares D, Pinto AF, Gonçalves AG, Mitchell DA, Krieger N (2013) Biodiesel production from soybean soapstock acid oil by hydrolysis in subcritical water followed by lipase-catalyzed esterification using a fermented solid in a packed-bed reactor. Biochem Eng J 81:15–23. https://doi.org/10.1016/j.bej.2013.09.017

    Article  CAS  Google Scholar 

  13. Moure VR, Fabrício C, Frensch G, Marques FA, Mitchell DA, Krieger N (2014) Enhancing the enantioselectivity of the lipase from Burkholderia cepacia LTEB11 towards the resolution of secondary allylic alcohols. Biocatal Agric Biotechnol 3(2):146–153. https://doi.org/10.1016/j.bcab.2013.09.011

    Article  Google Scholar 

  14. Alnoch RC, Stefanello AA, Paula Martini V, Richter JL, Mateo C, Souza EM, Mitchell DA, Muller-Santos M, Krieger N (2018) Co-expression, purification and characterization of the lipase and foldase of Burkholderia contaminans LTEB11. Int J Biol Macromol 116:1222–1231. https://doi.org/10.1016/j.ijbiomac.2018.05.086

    Article  CAS  PubMed  Google Scholar 

  15. Sambrook J, Maniatis T, Fritsch EF (1989) Cold Spring Harbor Cold Spring Harbor Laboratory Press NY. Molecular cloning: a laboratory manual. In: 2ed

    Google Scholar 

  16. Gnerre S, Maccallum I, Przybylski D et al (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A 108(4):1513–1518. https://doi.org/10.1073/pnas.1017351108

    Article  CAS  PubMed  Google Scholar 

  17. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829. https://doi.org/10.1101/gr.074492.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA (2013) The MaSuRCA genome assembler. Bioinformatics. 29(21):2669–2677. https://doi.org/10.1093/bioinformatics/btt476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guizelini D, Raittz RT, Cruz LM, Souza EM, Steffens MBR, Pedrosa FO (2016) GFinisher: a new strategy to refine and finish bacterial genome assemblies. Sci Rep 6(October):34963. https://doi.org/10.1038/srep34963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Richter M, Rossello-Mora R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci 106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alikhan NF, Petty NK, Ben Zakour NL, Beatson SA (2011) BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12. https://doi.org/10.1186/1471-2164-12-402

  22. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ussery DW, Kiil K, Lagesen K, Sicheritz-Ponten T, Bohlin J, Wassenaar TM (2009) The genus Burkholderia: analysis of 56 genomic sequences. Genome Dyn 6:140–157. https://doi.org/10.1159/000235768

    Article  CAS  PubMed  Google Scholar 

  25. Rosenau F, Tommassen J, Jaeger KE (2004) Lipase-specific foldases. ChemBioChem. 5(2):152–161. https://doi.org/10.1002/cbic.200300761

    Article  CAS  PubMed  Google Scholar 

  26. Urtuvia V, Villegas P, González M, Seeger M (2014) Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int J Biol Macromol 70:208–213. https://doi.org/10.1016/j.ijbiomac.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  27. Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87(2):137–146. https://doi.org/10.1016/S0960-8524(02)00212-2

    Article  CAS  PubMed  Google Scholar 

  28. Matias F, Brandt CA, da Silva ES, de Andrade Rodrigues MF (2017) Polyhydroxybutyrate and polyhydroxydodecanoate produced by Burkholderia contaminans IPT553. J Appl Microbiol 123(1):124–133. https://doi.org/10.1111/jam.13469

    Article  CAS  PubMed  Google Scholar 

  29. Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberón-Chávez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40(3):708–718. https://doi.org/10.1046/j.1365-2958.2001.02420.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Roseli Prado and Valter A. de Baura for technical support.

Funding

This genome sequencing project was supported by the Brazilian Program of National Institutes of Science and Technology-INCT and the Brazilian Research Council-CNPq/MCT. Research scholarships were granted to Nadia Krieger, David Mitchell, Fábio Pedrosa, Guilherme Sassaki, and Emanuel Souza by CNPq. Robson Alnoch was granted a PhD scholarship by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Krieger.

Additional information

Responsible Editor: Rodrigo Galhardo.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alnoch, R.C., Cardoso, R.L.A., Guizelini, D. et al. Genome sequencing of Burkholderia contaminans LTEB11 reveals a lipolytic arsenal of biotechnological interest. Braz J Microbiol 50, 619–624 (2019). https://doi.org/10.1007/s42770-019-00076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-019-00076-4

Keywords

Navigation