Growth of Candida norvegensis (strain Levazoot 15) with different energy, nitrogen, vitamin, and micromineral sources

  • C. Angulo-Montoya
  • O. Ruiz Barrera
  • Y. Castillo-CastilloEmail author
  • Y. Marrero-Rodriguez
  • A. Elias-Iglesias
  • A. Estrada-Angulo
  • G. Contreras-Pérez
  • C. Arzola-Álvarez
  • L. Carlos-Valdez
Fungal, Bacterial Physiology - Research Paper


To examine the growth of Candida norvegensis (strain Levazoot 15), four experiments were conducted with different sources of energy, nitrogen, vitamins, and microminerals. Optical density was used as an indirect measure of strain growth in a fully randomized factorial design, in which principal factor A was the source of energy, nitrogen, vitamins, or microminerals and principal factor B was the measurement time point (0, 20, or 40 h). The results showed that the yeast strain used glucose (primarily sucrose and lactose) as the energy source and tryptone as the nitrogen source. The addition of B-complex vitamins or microminerals was not necessary for strain growth. It is concluded that the strain Levazoot 15 preferentially utilizes glucose as a source of energy, tryptone as a source of nitrogen and manganese as a mineral source, and that no vitamin source was necessary for growth.


Yeast Growth Requirement Nutrient 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Al Ibrahim RM, Gath VP, Campion DP et al (2012) The effect of abruptor gradual introduction to pasture after calving and supplementation with Saccharomyces cerevisiae (Strain 1026) on ruminal pH and fermentation in early lactation dairy cows. Anim Feed Sci Technol 178:40–47CrossRefGoogle Scholar
  2. 2.
    Bruno RGS, Rutigliano HM, Cerri RL, Robinson PH, Santos JEP (2009) Effect of feeding Saccharomyces cerevisiae on performance of dairy cows during summer heat stress. Anim Feed Sci Technol 150:175–186CrossRefGoogle Scholar
  3. 3.
    Tripathi MK, Karim SA (2011) Effect of yeast cultures supplementation on live weight change, rumen fermentation, ciliate protozoa population, microbial hydrolytic enzymes status and slaughtering performance of growing lamb. Livest Sci 135:17–25CrossRefGoogle Scholar
  4. 4.
    Lee JH, Lim YB, Koh JH, Baig SY, Shin HT (2002) Screening of thermotolerant yeast for use as microbial feed additive. J Microbiol Biotechnol 12:162–165Google Scholar
  5. 5.
    Marrero Y, Castillo Y, Burrola E et al (2013) Identification of Levica yeast: as potential ruminal microbial additive. Czech J Anim Sci 58:460–469CrossRefGoogle Scholar
  6. 6.
    Marrero Y, Ruiz O, Corrales A et al (2014) In vitro gas production of fibrous substrates with the inclusion of yeasts. Cuban J Agric Sci 48:119–123Google Scholar
  7. 7.
    Ruiz-Barrera O, Castillo Y, Arzola C et al (2016) Effects of Candida norvegensis live cells on in vitro oat straw rumen fermentation. Asian Australas J Anim Sci 9:211–218Google Scholar
  8. 8.
    Castillo CY, Ruiz BO, Burrola BME et al (2016) Isolation and characterization of yeasts from fermented apple bagasse as additives for ruminant feeding. Braz J Microbiol 47:889–895CrossRefGoogle Scholar
  9. 9.
    Marrero Y, Castillo Y, Ruiz O, Burrola E, Angulo C (2015) Feeding of yeast (Candida spp.) improves in vitro ruminal 2 fermentation of fibrous substrates. J Integr Agric 14:514–519CrossRefGoogle Scholar
  10. 10.
    Villamil Y, Zapata Y (1999) Characterization of fermenters yeasts isolated from ripped fruits with potential application for ethanol production. Master of Science thesis. Pontificia Universidad Javeriana. Bogota, ColombiaGoogle Scholar
  11. 11.
    Kreger-Van Rij NJW (1994) The yeasts: a taxonomic study. Elsevier Science Publishers B. V, AmsterdamGoogle Scholar
  12. 12.
    Caldwell DR, Bryant MP (1966) Medium without fluid for non-selective enumeration and isolation of rumen bacteria. Appl Microbiol 14:794–801PubMedGoogle Scholar
  13. 13.
    Elías A (1971) The rumen bacteria of animals fed on a high molasses-urea diet. Doctoral thesis. Rowett Institute, Aberdeen, ScotlandGoogle Scholar
  14. 14.
    Marrero Y, Angulo MC, Ruiz O, Elías A, Madera N (2015) Growth of Pichia guilliermondii strain Levica 27 in different energy sources and nitrogen. Cuban J Agric Sci 49:47–52Google Scholar
  15. 15.
    Pszczolkowski P, Ceppi de Lecco C (2011) Manual de Vinificación. Guía práctica para a elaboración de vino. Ediciones Universidad Catolica de ChileGoogle Scholar
  16. 16.
    SAS (2004) SAS/STAT® 9.1 User’s Guide. SAS Institute Inc., GaryGoogle Scholar
  17. 17.
    Pandey A, Soccol CR, Rodríguez-Leon JA, Nigam P (2001) Factors that influence solid state fermentation. In: Solid state fermentation in biotechnology: fundamentals and applications. Cornell University,Asiatech PublishersGoogle Scholar
  18. 18.
    Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371CrossRefPubMedGoogle Scholar
  19. 19.
    Cardenas CD (2000) Yeasts of the genus candida of clinics origin. Evaluation of methods of identification. Doctoral thesis. Universidad de la Laguna. Canarias, Tenerife, SpainGoogle Scholar
  20. 20.
    Sandven P, Nielsen K, Digranes A, Tjade T, Lassen J (1997) Candida norvegensis: a fluconazole-resistant species. Antimicrob Agents Chemother 6:1375–1376CrossRefGoogle Scholar
  21. 21.
    Sarmiento A, Herrera J (2003) Obtention and characterization of a yeast bank with a potential probiotic application. Doctoral thesis. Pontificia Universidad Javeriana. Bogotá, ColombiaGoogle Scholar
  22. 22.
    Meinander B, Hahn-Hägerdal B (1997) Feed-batch xylitol production with two recombinant Saccharomyces cerevisiae strains expressing XYL 1 at different levels, using glucose as co-substrate: a comparison of production parameters and strain stability. Biotechnol Bioeng 54:391–399CrossRefPubMedGoogle Scholar
  23. 23.
    Hahn-Hägerdal B, Karhumaa K, Larsson CU, Gorwa-Grauslund M, Görgens J, van Zyl WH (2005) Role of cultivation media in the development of yeast strains for large scale industrial use. Microb Cell Factories 4(31):31. CrossRefGoogle Scholar
  24. 24.
    Underwood SA, Buszko ML, Shanmugam KT, Ingram LO (2002) Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Environ Microbiol 68:1071–1108CrossRefPubMedGoogle Scholar
  25. 25.
    Helle SS, Murray A, Lam J, Cameron DR, Duff SJ (2004) Xylose fermentation by genetically modified Saccharomyces cerevisiae 259ST in spent sulfite liquor. Bioresour Technol 92:163–171CrossRefPubMedGoogle Scholar
  26. 26.
    Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177CrossRefPubMedGoogle Scholar

Copyright information

© Sociedade Brasileira de Microbiologia 2018

Authors and Affiliations

  • C. Angulo-Montoya
    • 1
  • O. Ruiz Barrera
    • 1
  • Y. Castillo-Castillo
    • 1
    Email author
  • Y. Marrero-Rodriguez
    • 2
  • A. Elias-Iglesias
    • 2
  • A. Estrada-Angulo
    • 3
  • G. Contreras-Pérez
    • 3
  • C. Arzola-Álvarez
    • 1
  • L. Carlos-Valdez
    • 1
  1. 1.Facultad de Zootecnia y EcologíaUniversidad Autónoma de ChihuahuaChihuahuaMexico
  2. 2.Instituto de Ciencia Animal (ICA)San José de las LajasCuba
  3. 3.Facultad de Medicina Veterinaria y ZootecniaUniversidad Autónoma de SinaloaCuliacánMexico

Personalised recommendations