Skip to main content
Log in

Photovoltaic waste management in sub-Saharan Africa: current practices in Burkina Faso

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

Sub-Saharan Africa is witnessing a proliferation of photovoltaic (PV) waste due to the increasing number of solar PV power plants. PV waste (panels, batteries, electrical cables, mounting structures, and inverters) consists of elements such as mercury, cadmium, chromium, lead, copper, aluminum, fluorinated compounds, and plastics that are toxic to human health and the environment if a proper management system is not available. Although many studies worldwide have focused on PV waste management, very few have been conducted in sub-Saharan Africa. This study aims to investigate the current PV waste management system in Burkina Faso, determine stakeholder profiles, and propose strategies to enhance the existing system. Documentary research, interviews, questionnaires, and field visits were used in the methodology. The survey showed that young people, mainly under 30 years of age and with a primary education, dominate (70%) in terms of PV waste collection and repair activities, while the more technical recycling and export activities are carried out mainly (88%) by stakeholders older than 40 years and with a secondary education (60%). Among the older stakeholders, 100% are aware of the hazardous nature of PV waste, whereas 36% are young people. From an environmental perspective, the main source of contamination observed is the release of lead-rich sulfuric acids into water and soil during the collection and repair phases. During the recycling of batteries and electrical cables, toxic fumes are emitted into the air, and recycling residues rich in toxic substances are landfilled. To reduce risks to human health and the environment when managing PV waste, the introduction of legislation, the multiplication of collection points and appropriate infrastructures, the training and awareness-raising of stakeholders, and the extended responsibility of manufacturers are recommended. Studies on the economic feasibility of setting up formal management structures are needed to complete this work.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Antonanzas-Torres, F., Antonanzas, J., and Blanco-Fernandez, J. 2021. State-of-the-art of mini grids for rural electrification in West Africa. Energies 14: 990. https://doi.org/10.3390/en14040990.

    Article  Google Scholar 

  2. International Energy Agency. 2022. Africa energy outlook 2022. Paris: OECD.

    Book  Google Scholar 

  3. Farquharson, D.V., Jaramillo, P., and Samaras, C. 2018. Sustainability implications of electricity outages in sub-Saharan Africa. Nature Sustainability 1: 589–597. https://doi.org/10.1038/s41893-018-0151-8.

    Article  Google Scholar 

  4. Adeoye, O., and Spataru, C. 2018. Sustainable development of the West African Power Pool: Increasing solar energy integration and regional electricity trade. Energy for Sustainable Development 45: 124–134. https://doi.org/10.1016/j.esd.2018.05.007.

    Article  Google Scholar 

  5. Kouton, J. 2019. Information Communication Technology development and energy demand in African countries. Energy 189: 116192. https://doi.org/10.1016/j.energy.2019.116192.

    Article  Google Scholar 

  6. Bitting, C.D., Atangana, B.D.N., and Tabi, H.N. 2022. Climate change vulnerability and sustainable urbanisation in Sub-Saharan African. Journal of Sustainable Development 15: 132. https://doi.org/10.5539/jsd.v15n2p132.

    Article  Google Scholar 

  7. Adenuga, K.I., Mahmoud, A.S., and Dodo, Y.A. 2021. Climate change adaptation and mitigation in Sub-Saharan African countries. In Advanced Sciences and Technologies for Security Applications. Cham: Springer. https://doi.org/10.1007/978-3-030-63654-8_16.

    Chapter  Google Scholar 

  8. Berahab, R. 2019. Energies renouvelables en Afrique: Enjeux, défis et opportunités. Rabat, Maroc: Policy Center for the New South.

  9. ESMAP (Energy Sector Management Assistance Program). 2022. 2022 Mini Grids for Half a Billion People: Market Outlook and Handbook for Decision Makers. World Bank. Available at: http://hdl.handle.net/10986/3808. Accessed 20 Aug 2023.

  10. Trancik, J.E., and Cross-Call, D. 2013. Energy technologies evaluated against climate targets using a cost and carbon trade-off curve. Environmental Science and Technology 47: 6673–6680. https://doi.org/10.1021/es304922v.

    Article  CAS  Google Scholar 

  11. IRENA. 2020. Renewable Power Generation Costs in 2020. Abu Dhabi: International Renewable Energy Agency.

  12. Kavlak, G., McNerney, J., and Trancik, J.E. 2018. Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy 123: 700–710. https://doi.org/10.1016/j.enpol.2018.08.015.

    Article  Google Scholar 

  13. AFSIA. 2022. Annual solar outlook 2022: a country by country review of the status of solar energy in Africa. Kigali, Rwanda: African Solar Industry Association.

  14. Kizilcec, V., and Parikh, P. 2020. Solar home systems: a comprehensive literature review for Sub-Saharan Africa. Energy for Sustainable Development 58: 78–89. https://doi.org/10.1016/j.esd.2020.07.010.

    Article  Google Scholar 

  15. Antonanzas-Torres, F., Antonanzas, J., and Blanco-Fernandez, J. 2021. Environmental impact of solar home systems in Sub-Saharan Africa. Sustainability 13: 1–19. https://doi.org/10.3390/su13179708.

    Article  Google Scholar 

  16. Okoroigwe, F.C., Okoroigwe, E.C., Ajayi, O.O., et al. 2020. Photovoltaic modules waste management: ethical issues for developing nations. Energy Technology 8: 2000543. https://doi.org/10.1002/ente.202000543.

    Article  Google Scholar 

  17. Weckend, S., Wade, A., and Heath, G. 2016. End-of-life management: solar photovoltaic panels. Photovoltaic Systems Programme.

  18. Mahmoudi, S., Huda, N., and Behnia, M. 2020. Environmental impacts and economic feasibility of end of life photovoltaic panels in Australia: A comprehensive assessment. Journal of Cleaner Production 260: 120996. https://doi.org/10.1016/j.jclepro.2020.120996.

    Article  Google Scholar 

  19. Mahmoudi, S., Huda, N., Alavi, Z., et al. 2019. End-of-life photovoltaic modules: A systematic quantitative literature review. Resources, Conservation and Recycling 146: 1–16. https://doi.org/10.1016/j.resconrec.2019.03.018.

    Article  Google Scholar 

  20. Latunussa, C.E.L., Mancini, L., Blengini, G.A., et al. 2016. Analysis of material recovery from silicon photovoltaic panels. https://doi.org/10.2788/786252.

  21. Sheoran, M., Kumar, P., Sharma, S., et al. 2021. Photovoltaic waste assessment in India and its environmental impact. Journal of Physics: Conference Series 1849: 012003.

    CAS  Google Scholar 

  22. Paiano, A. 2015. Photovoltaic waste assessment in Italy. Renewable and Sustainable Energy Reviews 41: 99–112. https://doi.org/10.1016/j.rser.2014.07.208.

    Article  Google Scholar 

  23. Pure Earth. 2020. Assessment of informal used lead acid battery recycling and associated impacts in Bangladesh. Report for United Nations Environment Programme. New York, NY: Pure Earth.

  24. van der Kuijp, T.J., Huang, L., and Cherry, C.R. 2013. Health hazards of China’s lead-acid battery industry: a review of its market drivers, production processes, and health impacts. Environmental Health 12: 61. https://doi.org/10.1186/1476-069X-12-61.

    Article  CAS  Google Scholar 

  25. Latunussa, C., Ardente, F., Blengini, G.A., et al. 2016. Life Cycle Assessment of an innovative recycling process for crystalline silicon photovoltaic panels. Solar Energy Materials and Solar Cells 156: 101–111. https://doi.org/10.1016/j.solmat.2016.03.020.

    Article  CAS  Google Scholar 

  26. European Parliament and Council. 2012. Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on waste electrical and electronic equipment (WEEE). Official Journal of the European Union, 38–71. Available at: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:197:0038:0071:en:PDF. Accessed 20 Aug 2023.

  27. European Parliament and Council. 2012. Directive 2011/7/EU of the European Parliament and of the Council. In: Fundamental texts on European private law. p. 38–71. https://doi.org/10.5040/9781782258674.0030

  28. IEA PVPS EoL Task 12. 2022. Status of PV module recycling in selected IEA PVPS, Task12 countries 2022 PVPS Task 12 PV sustainability. Photovoltaic Power Systems Programme.

  29. EC. 2020. European Commission Proposal for a Regulation of the European Parliament and of the Council concerning batteries and waste batteries, repealing Directive 2006/66/EC and amending Regulation (EU) No 2019/1020.

  30. Kim, H., Park, H. 2018. PV waste management at the crossroads of circular economy and energy transition: The case of South Korea. Sustainability 10: 3565. https://doi.org/10.3390/su10103565.

    Article  CAS  Google Scholar 

  31. IEA. 2018. Snapshot of global photovoltaic markets—2018. Report No. IEA PVPS T1–332018. pp. 1–16.

  32. Adenle, A.A. 2020. Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda and sustainable development goals. Energy Policy 137: 111180.

    Article  Google Scholar 

  33. Washington State. 2017. Photovoltaic module stewardship and takeback program. pp. 1–5.

  34. Ravikumar, D., Seager, T., Sinha, P., et al. 2020. Environmentally improved CdTe photovoltaic recycling through novel technologies and facility location strategies. Progress in Photovoltaics: Research and Applications 28: 887–898. https://doi.org/10.1002/pip.3279.

    Article  CAS  Google Scholar 

  35. Ravikumar, D., Sinha, P., Seager, T.P., et al. 2016. An anticipatory approach to quantify energetics of recycling CdTe photovoltaic systems. Progress in Photovoltaics: Research and Applications 24: 735–746. https://doi.org/10.1002/pip.2711.

    Article  CAS  Google Scholar 

  36. Forti, V., Baldé, C.P., Kuehr, R., et al. 2020. The global e-waste monitor 2020: quantities flows, and the circular economy potential. Bonn, Geneva and Rotterdam: United Nations University/United Nations Institute for Training and Research, International Telecommunication Union, and International Solid Waste Association.

  37. Magalini, F., Clarke, A., Stillhart, R., et al. 2021. E-waste guide for solar in Nigeria e-waste guide for stand-alone solar in Nigeria. Abuja, Nigeria: African clean energy.

  38. Kinally, C., Antonanzas-Torres, F., Podd, F., et al. 2022. Off-grid solar waste in sub-Saharan Africa: Market dynamics, barriers to sustainability, and circular economy solutions. Energy for Sustainable Development 70: 415–429. https://doi.org/10.1016/j.esd.2022.08.014.

    Article  Google Scholar 

  39. Ministry of Economy and Planning (MEFP). 2022. Cinquième Recensement Général de la Population et de l’Habitation du Burkina Faso. Résultats Préliminaires du 5e RGPH.

  40. IRENA. 2021. Utility-scale solar and wind areas: Burkina Faso. Abu Dhabi: International Renewable Energy Agency.

  41. Sahlberg, A., Khavari, B., Korkovelos, A., et al. 2021. A scenario discovery approach to least-cost electrification modelling in Burkina Faso. Energy Strategy Review 38: 100714. https://doi.org/10.1016/j.esr.2021.100714.

    Article  Google Scholar 

  42. Moner-Girona, M., Bódis, K., Huld, T., et al. 2016. Universal access to electricity in Burkina Faso: Scaling-up renewable energy technologies. Environmental Research Letters 11: 084010. https://doi.org/10.1088/1748-9326/11/8/084010.

    Article  Google Scholar 

  43. IRENA. 2018. Measurement and estimation of off-grid solar, hydro and biogas energy. Abu Dhabi: International Renewable Energy Agency.

  44. ECREEE. 2019. Off-grid solar market assessment & private sector support facility design in Burkina Faso. Paia: ECOWAS Center of Renwable Energy and Energy Efficiency.

  45. Ndzibah, E., Andrea Pinilla-De La Cruz, G., and Shamsuzzoha, A. 2022. End of life analysis of solar photovoltaic panel: roadmap for developing economies. International Journal of Energy Sector Management 16: 112–128. https://doi.org/10.1108/IJESM-11-2020-0005.

    Article  Google Scholar 

  46. Sica, D., Malandrino, O., Supino, S., et al. 2018. Management of end-of-life photovoltaic panels as a step towards a circular economy. Renewable and Sustainable Energy Reviews 82: 2934–2945. https://doi.org/10.1016/j.rser.2017.10.039.

    Article  Google Scholar 

  47. Xu, Y., Li, J., Tan, Q., et al. 2018. Global status of recycling waste solar panels: A review. Waste Management 75: 450–458. https://doi.org/10.1016/j.wasman.2018.01.036.

    Article  CAS  Google Scholar 

  48. Fomba Kamga, B., Talla Fokam, D.N.D., and Ningaye, P. 2022. Political instability and youths unemployment in sub-Saharan Africa. Review of Development Economics 26: 1850–1879. https://doi.org/10.1111/RODE.12870.

    Article  Google Scholar 

  49. Dieng, D., Diop, C., Sonko, E.H.M., et al. 2018. Gestion des déchets d’équipements électriques et électroniques (DEEE) au Sénégal: acteurs et stratégie d’organisation de la filière. International Journal of Biological and Chemical Sciences 11: 2393. https://doi.org/10.4314/ijbcs.v11i5.35.

    Article  CAS  Google Scholar 

  50. Ngugi, E.F. 2017. Women participation in residential solid waste management: A case study of Malindi Town, Kenya. Available at: http://erepository.uonbi.ac.ke/handle/11295/102794. Accessed 20 Aug 2023.

  51. Balasubramanian, S., Clare, D., Ko, S. 2019. Off-grid solar e-waste: impacts and solutions in East Africa. Master's Project, Duke University.

  52. Billard, Y., Bazin, F., Lacroix, O. 2012. RECORD: Recyclage des panneaux photovoltaïques en fin de vie. Etat des lieux international. Available at: https://record-net.org/storage/etudes/11-0912-1A/rapport/Rapport_record11-0912_1A.pdf. Accessed 20 Aug 2023.

  53. Catherino, H.A., Feres, F.F., and Trinidad, F. 2004. Sulfation in lead-acid batteries? Journal of Power Sources 129: 113–120. https://doi.org/10.1016/j.jpowsour.2003.11.003.

    Article  CAS  Google Scholar 

  54. Jamratnaw, W. 2017. Desulfation of lead-acid battery by high frequency pulse. In: 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). 27-30 June 2017, Phuket, Thailand. pp. 676–679. https://doi.org/10.1109/ECTICon.2017.8096328.

  55. Shi, Y., Ferone, C.A., and Rahn, C.D. 2013. Identification and remediation of sulfation in lead-acid batteries using cell voltage and pressure sensing. Journal of Power Sources 221: 177–185. https://doi.org/10.1016/j.jpowsour.2012.08.013.

    Article  CAS  Google Scholar 

  56. WHO. 2017. Recycling used lead-acid batteries: health considerations. Geneva: World Health Organization.

  57. UNEP. 1994. The Basel convention on the control of transboundary movements of hazardous wastes and their disposal. Central European Journal of Public Health 2: 10–15. https://doi.org/10.1515/9783110874815-040.

    Article  Google Scholar 

  58. OMS. 2008. Intoxication au plomb à Thiaroye sur Mer, Sénégal. Genève: Organisation Mondiale de la Santé.

  59. Haefliger, P., Mathieu-Nolf, M., Lociciro, S., et al. 2009. Mass lead intoxication from informal used lead-acid battery recycling in Dakar, Senegal. Environmental Health Perspectives 117: 1535–1540. https://doi.org/10.1289/ehp.0900696.

    Article  CAS  Google Scholar 

  60. UNEP. 2010. Metal stocks in society scientific synthesis. Nairobi: United Nations Environment Programme.

  61. Ansari, S.A., Shakeel, A., Sawarkar, R., et al. 2023. Additive facilitated co-composting of lignocellulosic biomass waste, approach towards minimizing greenhouse gas emissions: An up to date review. Environmental Research 224: 115529. https://doi.org/10.1016/j.envres.2023.115529.

    Article  CAS  Google Scholar 

  62. Manhart, A., Osibanjo, P.D.O., Aderinto, D.A., Prakash, S. 2011. Informal e-waste management in Lagos, Nigeria–socio-economic impacts and feasibility of international recycling co-operations. Final report of component 3 of the UNEP SBC E-waste Africa Project, 125. Available at: http://www.basel.int/Portals/4/BaselConvention/docs/eWaste/E-waste_Africa_Project_Nigeria.pdf. Accessed 20 Aug 2023.

  63. Mbodji, M. 2021. Etude des impacts environnementaux et sanitaires des déchets d’équipements électriques et électroniques (DEEE) au Sénégal: cas de la ville de Dakar. Available at: https://theses.hal.science/tel-03733715. Accessed 20 Aug 2023.

  64. Manhart, A., Schleicher, T. 2015. The recycling chain for used lead- acid batteries in Ghana. Available at: https://www.oeko.de/oekodoc/2316/2015-487-en.pdf. Accessed 20 Aug 2023.

Download references

Acknowledgements

The authors wish to thank the German state for financial support through the Deutscher Akademischer Austauschdienst Scholarship and the Agence Nationale des Energies Renouvelables et de l’Efficacité for providing data on PV system in Burkina Faso.

Funding

No financial support was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yrebegnan Moussa Soro.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badza, K., Soro, Y.M. & Sawadogo, M. Photovoltaic waste management in sub-Saharan Africa: current practices in Burkina Faso. Waste Dispos. Sustain. Energy (2024). https://doi.org/10.1007/s42768-023-00184-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42768-023-00184-w

Keywords

Navigation