Skip to main content
Log in

Optimization of adsorbent dose and contact time for the production of jackfruit waste nutrient-enriched biochar

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

Raw biochar can be enriched with nutrients from digestates through adsorption producing nutrient-enriched biochar. The nutrient-enriched biochar can be used as a soil amendment to support sustainable agriculture. This study assessed the effect of adsorbent dose and contact time on the jackfruit waste biochar adsorption of essential nutrients of nitrogen, phosphors and potassium from the digestate. Response surface methodology (RSM) using central composite design (CCD) was utilized to optimize the adsorbent dose and contact time during the adsorption process. An adsorbent dose of 20–70 mg/g and contact time range of 48–120 h were used in this study. The optimal adsorbent dose and contact time were found to be 20 mg/g and 114.6 h, respectively. The corresponding optimum nitrogen, phosphorus and potassium adsorbed were 17.44, 20.94, and 21.36 mg/g, respectively. Models for the prediction of these values for nitrogen, phosphorus and potassium had R2 values of 0.9801, 0.9804 and 0.9843, respectively, and non-significant lack of fit (p<0.05). This indicates the suitability of the models in predicting the adsorption conditions of adsorbent dose and contact time to produce high-quality nutrient-enriched biochar.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used are availlable on reasonable request.

References

  1. Hu, B., Ai, Y., and Jin, J. 2020. Efficient elimination of organic and inorganic pollutants by biochar and biochar-based materials. Biochar 2 (1): 47–64. https://doi.org/10.1007/s42773-020-00044-4.

    Article  Google Scholar 

  2. Chausali, N., Saxena, J., and Prasad, R. 2021. Nanobiochar and biochar based nanocomposites: Advances and applications. Journal of Agriculture and Food Research 5: 100191. https://doi.org/10.1016/j.jafr.2021.100191.

    Article  Google Scholar 

  3. Ramanayaka, S., Vithanage, M., Alessi, D.S., et al. 2020. Nanobiochar: Production, properties, and multifunctional applications. Environmental Science. Nano 7 (11): 3279–3302. https://doi.org/10.1039/d0en00486c.

    Article  CAS  Google Scholar 

  4. Rasul, F., Gull, U., Rahman, H.M., et al. 2016. Biochar: An emerging technology for climate change mitigation. Journal of Environmental and Agricultural Sciences 9: 37–43.

    Google Scholar 

  5. Woolf, D., Amonette, J.E., Street-Perrott, F.A., et al. 2010. Sustainable biochar to mitigate global climate change. Nature Communications 1 (5): 1–9. https://doi.org/10.1038/ncomms1053.

    Article  CAS  Google Scholar 

  6. Kizito, S., Luo, H., Lu, J., et al. 2019. Role of nutrient-enriched biochar as a soil amendment during maize growth: Exploring practical alternatives to recycle agricultural residuals and to reduce chemical fertilizer demand. Sustainability 11: 3211. https://doi.org/10.3390/su11113211.

    Article  CAS  Google Scholar 

  7. Ayeleru, O.O., Ntuli, F., Mbohwa, C. 2016. Characterisation of Fruits and Vegetables Wastes in the City of Johannesburg. In Proceedings of the World Congress on Engineering and Computer Science, Vol II, San Francisco, CA, USA, 19–21 October 2016.

  8. Srivatsav, P., Bhargav, B.S., Shanmugasundaram, V., et al. 2020. Biochar as an eco-friendly and economical adsorbent for the removal of colorants (Dyes) from aqueous environment: A review. Water 12: 3561. https://doi.org/10.3390/w12123561.

    Article  CAS  Google Scholar 

  9. Kizito, S., Luo, H., Wu, S., et al. 2017. Phosphate recovery from liquid fraction of anaerobic digestate using four slow pyrolyzed biochars: Dynamics of adsorption, desorption and regeneration. Journal of Environmental Management 2011: 260–267. https://doi.org/10.1016/j.jenvman.2017.06.057.

    Article  CAS  Google Scholar 

  10. Nsubuga, D., Banadda, N., Kabenge, I., et al. 2020. Potential of jackfruit waste for biogas, briquettes and as a carbon dioxide sink-a review. Journal of Sustainable Development 13 (4): 163–172. https://doi.org/10.5539/jsd.v13n4p60.

    Article  Google Scholar 

  11. Nansereko, S., Muyonga, J., and Byaruhanga, Y.B. 2022. Optimization of drying conditions for jackfruit pulp using Refractance Window Drying technology. Food Science & Nutrition 10 (5): 1333–1343. https://doi.org/10.1002/fsn3.2694.

    Article  CAS  Google Scholar 

  12. Kizito, S., Wu, S., Kipkemoi, K., et al. 2015. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Science of the Total Environment 505: 102–112. https://doi.org/10.1016/j.scitotenv.2014.09.096.

    Article  CAS  Google Scholar 

  13. Yiga, V.A., Lubwama, M., Pagel, S., et al. 2021. Optimization of tensile strength of PLA/clay/rice husk composites using Box-Behnken design. Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-021-01971-3.

    Article  Google Scholar 

  14. Yolmeh, M., and Jafari, S.M. 2017. Applications of response surface methodology in the food industry processes. Food and Bioprocess Technology 10 (3): 413–433. https://doi.org/10.1007/s11947-016-1855-2.

    Article  CAS  Google Scholar 

  15. Mehta, D., Prasad, P., Bansal, V., et al. 2017. Effect of drying techniques and treatment with blanching on the physicochemical analysis of bitter-gourd and capsicum. LWT Journal of Food Science and Technology 84: 479–488. https://doi.org/10.1016/j.lwt.2017.06.005.

    Article  CAS  Google Scholar 

  16. Kabenge, I., Omulo, G., Banadda, N., et al. 2018. Characterization of banana peels wastes as potential slow pyrolysis feedstock. Journal of Sustainable Development 11 (2): 14–24. https://doi.org/10.5539/jsd.v11n2p14.

    Article  Google Scholar 

  17. Yu, Q., Sun, C., Liu, R., et al. 2020. Anaerobic co-digestion of corn stover and chicken manure using continuous stirred tank reactor: The effect of biochar addition and urea pretreatment. Bioresource Technology 319: 124197. https://doi.org/10.1016/j.biortech.2020.124197.

    Article  CAS  Google Scholar 

  18. Kumar, M., Dutta, S., You, S., et al. 2021. A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge. Journal of Cleaner Production 305: 127143. https://doi.org/10.1016/j.jclepro.2021.127143.

    Article  CAS  Google Scholar 

  19. Djaafri, M., Kalloum, S., Kaidi, K., et al. 2020. Enhanced methane production from dry leaflets of Algerian date palm (Phoenix dactylifera L.) Lahmira cultivar, by alkaline pretreatment. Waste and Biomass Valorization 11 (6): 2661–2671. https://doi.org/10.1007/s12649-018-00574-w.

    Article  CAS  Google Scholar 

  20. Filer, J., Ding, H.H., and Chang, S. 2019. Biochemical methane potential (BMP) assay method for anaerobic digestion research. Water 11:  921. https://doi.org/10.3390/w11050921.

    Article  CAS  Google Scholar 

  21. Slimane, K., Fathya, S., Assia, K., et al. 2014. Influence of inoculums/substrate ratios (ISRs) on the mesophilic anaerobic digestion of slaughterhouse waste in batch mode: Process stability and biogas production. Energy Procedia 50: 57–63. https://doi.org/10.1016/j.egypro.2014.06.007.

    Article  CAS  Google Scholar 

  22. Azzahrani, I.N., Davanti, F.A., Millati, R., et al. 2018. Effect of hydraulic retention time (HRT) and organic loading rate (OLR) to the nata de coco anaerobic treatment efficiency and its wastewater characteristics. Agritech 38 (2): 160–174. https://doi.org/10.22146/agritech.24226.

    Article  Google Scholar 

  23. Kiggundu, N., and Sittamukyoto, J. 2019. Pryloysis of coffee husks for biochar production. Journal of Environmental Protection 10 (12): 1553–1564. https://doi.org/10.4236/jep.2019.1012092.

    Article  CAS  Google Scholar 

  24. Omulo, G., Banadda, N., Kabenge, I., et al. 2019. Optimizing slow pyrolysis of banana peels wastes using response surface methodology. Environmental Engineering Research 24 (2): 354–361. https://doi.org/10.4491/EER.2018.269.

    Article  Google Scholar 

  25. Klinger, J.L., Westiver, T.L., Emerson, R.M., et al. 2018. Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities. Applied Energy 228: 535–545. https://doi.org/10.1016/j.apenergy.2018.06.107.

    Article  CAS  Google Scholar 

  26. Kizza, R., Banadda, N., Kabenge, I., et al. 2019. Pyrolysis of wood residues in a cylindrical batch reactor: Effect of operating parameters on the quality and yield of products. Journal of Sustainable Development 12 (5): 112–130. https://doi.org/10.5539/jsd.v12n5p112.

    Article  Google Scholar 

  27. Soetardji, J.P., Widjaja, C., Djojorahardjo, Y., et al. 2014. Bio-oil from Jackfruit Peel Waste. Procedia Chemistry 9: 158–164. https://doi.org/10.1016/j.proche.2014.05.019.

    Article  CAS  Google Scholar 

  28. Ashworth, A.J., Sadaka, S.S., Allen, F.L., et al. 2014. Influence of pyrolysis temperature and production conditions on switchgrass biochar for use as a soil amendment. BioResources 9 (4): 7622–7635. https://doi.org/10.15376/biores.9.4.7622-7635.

    Article  Google Scholar 

  29. Kocatürk-Schumacher, N.P., Zwart, K., Bruun, S., et al. 2017. Does the combination of biochar and clinoptilolite enhance nutrient recovery from the liquid fraction of biogas digestate? Environmental technology 38 (10): 1313–1323. https://doi.org/10.1080/09593330.2016.1226959.

    Article  CAS  Google Scholar 

  30. Kocaturk NP. Recovery of nutrients from biogas digestate with biochar and clinoptilolite. 2016. Ph.D. Dissertation, Univertsity of Copenhagen, Denmark, and Wageningen, The Netherland. https://doi.org/10.18174/382569.

  31. Barsan, N., Zaharia, A., Chitumu, D., et al. 2020. Filtration Theory and Techniques. A Short Review on the Filtration Process. 2020 7th International Conference on Energy Efficiency & Agricultural Engineering. 12th–14th November 2020, Ruse, Bulgaria. https://doi.org/10.1109/EEAE49144.2020.9278975.

  32. Nsubuga, D., Banadda, N., Kabenge, I., et al. 2021. Potential of jackfruit waste as anaerobic digestion and slow pyrolysis feedstock. Journal of Biosystems Engineering 46: 163–172. https://doi.org/10.1007/s42853-021-00096-9.

    Article  Google Scholar 

  33. Menya, E., Olupot, E., Storz, H., et al. 2019. Optimization of pyrolysis conditions for char production from rice husks and its characterization as a precursor for production of activated carbon. Biomass conversion and biorefinery 10, 57–72. https://doi.org/10.1007/s13399-019-00399-0.

    Article  CAS  Google Scholar 

  34. Stat-Ease Inc.. Stat-Ease Handbook for Experimenters. 2019. Available via https://cdnm.statease.com/pubs/handbk_for_exp_sv.pdf. Accessed 15th April 2022.

  35. Greenberg, A.E., Clesceri, S.L., and Eaton, A.D. 1990. Standard methods: For the examination of water and waste water. Analytical Biochemistry. https://doi.org/10.1016/0003-2697(90)90598-4.

    Article  Google Scholar 

  36. Anderson, G.K., and Yang, G. 1992. Determination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration. Water Environment Research 4 (1): 53–59. https://doi.org/10.2175/wer.64.1.8.

    Article  Google Scholar 

  37. Angelidaki, I., Alves, M., Borzacconi, L., et al. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Science and Technology 59 (5): 927–934. https://doi.org/10.2166/wst.2009.040.

    Article  CAS  Google Scholar 

  38. Watanabe, F.S., and Olsen, S.R. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal 29 (6): 677–678. https://doi.org/10.2136/sssaj1965.03615995002900060025x.

    Article  CAS  Google Scholar 

  39. Solé-Bundó, M., Cucina, M., Folch, M., et al. 2017. Assessing the agricultural reuse of the digestate from microalgae anaerobic digestion and co-digestion with sewage sludge. Science of the Total Environment 586: 1–9. https://doi.org/10.1016/j.scitotenv.2017.02.006.

    Article  CAS  Google Scholar 

  40. Munera-Echeverri, J.L., Martinsen, V., Strand, L.T., et al. 2018. Cation exchange capacity of biochar: An urgent method modification. Science of the Total Environment 642: 190–197. https://doi.org/10.1016/j.scitotenv.2018.06.017.

    Article  CAS  Google Scholar 

  41. Yaashikaa, P.R., Kumar, P.S., Varjani, S., et al. 2020. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports 28: e00570. https://doi.org/10.1016/j.btre.2020.e00570.

    Article  CAS  Google Scholar 

  42. Stella, M.G., Sugumaran, P., Niveditha, S., et al. 2016. Production, characterization and evaluation of biochar from pod (Pisum sativum), leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. International Journal of Recycling of Organic Waste in Agriculture 5 (1): 43–53. https://doi.org/10.1007/s40093-016-0116-8.

    Article  Google Scholar 

  43. Ali, M.M., and Afify, M.K. 2017. Effect of different concentrations of total solid on biogas production from poultry wastes slurry. Zagazig Journal of Agricultural Research 44 (6): 2703–2716.

    Article  Google Scholar 

  44. Orhorhoro, E.E., Ebunilo, O.P., and Sadjere, E.G. 2017. Experimental determination of effect of total solid (TS) and volatile solid (VS) on biogas yield. American Journal of Modern Energy 3 (6): 131–143. https://doi.org/10.11648/j.ajme.20170306.13.

    Article  Google Scholar 

  45. Sajeena, B.B., Jose, P.P., and Madhu, G. 2013. Effect of total solid concentration on anaerobic digestion of the organic fraction of municipal solid waste. International Journal of Scientific and Research Publications 3 (8): 1–5.

    Google Scholar 

  46. Kumar, V., Kumar, P., Kumar, P., et al. 2020. Anaerobic digestion of Azolla pinnata biomass grown in integrated industrial effluent for enhanced biogas production and COD reduction: Optimization and kinetics studies. Environmental Technology and Innovation 17: 100627. https://doi.org/10.1016/j.eti.2020.100627.

    Article  Google Scholar 

  47. Fernandez, C.H., Teixeira Franco, R., Bayard, R., et al. 2020. Mechanical pre-treatments evaluation of cattle manure before anaerobic digestion. Waste and Biomass Valorization 11 (10): 5175–5184. https://doi.org/10.1007/s12649-020-01022-4.

    Article  CAS  Google Scholar 

  48. Issah, A.A., and Kabera, T. 2021. Impact of volatile fatty acids to alkalinity ratio and volatile solids on biogas production under thermophilic conditions. Waste Management & Research 39 (6): 871–878. https://doi.org/10.1177/0734242X20957395.

    Article  CAS  Google Scholar 

  49. Teglia, C., Tremier, A., and Martel, J.L. 2011. Characterization of solid digestates: Part 1, review of existing indicators to assess solid digestates agricultural use. Waste and Biomass Valorization 2 (1): 43–58. https://doi.org/10.1007/s12649-010-9051-5.

    Article  Google Scholar 

  50. Mosquera-Losada, M.R., Muñoz-Ferreiro, N., and Rigueiro-Rodríguez, A. 2009. Agronomic characterisation of different types of sewage sludge: Policy implications. Waste Management 30 (3): 492–503. https://doi.org/10.1016/j.wasman.2009.09.021.

    Article  CAS  Google Scholar 

  51. Massaccesi, L., Sordi, A., Micale, C., et al. 2013. Chemical characterisation of percolate and digestate during the hybrid solid anaerobic digestion batch process. Process Biochemistry 48 (9): 1361–1367. https://doi.org/10.1016/j.procbio.2013.06.026.

    Article  CAS  Google Scholar 

  52. Hassan, Z.M., Roslan, S.A., Sapuan, S.M., et al. 2020. Mercerization optimization of bamboo (Bambusa vulgaris) fiber-reinforced epoxy composite structures using a Box-Behnken design. Polymers 12 (6): 1–9. https://doi.org/10.3390/POLYM12061367.

    Article  Google Scholar 

  53. Nor, M.F.A., Hassan, Z.M., Rashid, A.Z., et al. 2021. Optimization on tensile properties of kenaf/multi-walled CNT hybrid composites with Box-Behnken design. Applied Composite Materials 28 (3): 607–632. https://doi.org/10.1007/s10443-021-09879-x.

    Article  CAS  Google Scholar 

  54. Stamenković, O.S., Kostić, M.D., Radosavljević, D.B., et al. 2018. Comparison of Box-Behnken, face central composite and full factorial designs in optimization of hempseed oil extraction by n-hexane: A case study. Periodica Polytechnica Chemical Engineering 62 (3): 359–367. https://doi.org/10.3311/PPch.11448.

    Article  Google Scholar 

  55. Hassan, M., Sapuan, S.M., Roslan, S.A., et al. 2019. Aziz SA, Optimization of tensile behavior of banana pseudo-stem (Musa acuminate) fiber reinforced epoxy composites using response surface methodology. Journal of Materials Research and Technology 8 (4): 3517–3528. https://doi.org/10.1016/j.jmrt.2019.06.026.

    Article  CAS  Google Scholar 

  56. Lubwama, M., Yiga, V.A., and Lubwama, H.N. 2020. Effects and interactions of the agricultural waste residues and binder type on physical properties and calorific values of carbonized briquettes. Biomass Conversion and Biorefinery 12: 4979–4999. https://doi.org/10.1007/s13399-020-01001-8.

    Article  CAS  Google Scholar 

  57. Saarela, T., Kakaei, E., Ari, L., et al. 2020. Biochar as adsorbent in purification of clear—cut forest runoff water: Adsorption rate and adsorption capacity. Biochar 2 (2): 227–237. https://doi.org/10.1007/s42773-020-00049-z.

    Article  Google Scholar 

  58. Halim, A.A., Latif, M.T., and Ithnin, A. 2013. Ammonia removal from aqueous solution using organic acid modified activated carbon. World Applied Sciences Journal 24 (1): 1–6. https://doi.org/10.5829/idosi.wasj.2013.24.01.7454.

    Article  CAS  Google Scholar 

  59. Kučić, D., Ćosić, I., Vuković, M., et al. 2013. Sorption kinetic studies of ammonium from aqueous solution on different inorganic and organic media. Acta Chimica Slovenica 60 (1): 109–119.

    Google Scholar 

  60. Sica, M., Duta, A., Teodosiu, C., et al. 2014. Thermodynamic and kinetic study on ammonium removal from a synthetic water solution using ion exchange resin. Clean Technologies and Environmental Policy 16 (2): 351–359. https://doi.org/10.1007/s10098-013-0625-3.

    Article  CAS  Google Scholar 

  61. Jung, K.W., Hwang, M.J., Ahn, K.H., et al. 2015. Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media. International Journal of Environmental Science and Technology 12 (10): 3363–3372. https://doi.org/10.1007/s13762-015-0766-5.

    Article  CAS  Google Scholar 

  62. Wang, Z., Guo, H., Shen, F., et al. 2015. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3-), and phosphate (PO43-). Chemosphere 119: 646–653. https://doi.org/10.1016/j.chemosphere.2014.07.084.

    Article  CAS  Google Scholar 

  63. Siddique, S.H., Faisal, S., Ali, M., et al. 2021. Optimization of process variables for tensile properties of bagasse fiber-reinforced composites using response surface methodology. Polymers and Polymer Composites 29 (8): 1304–1312. https://doi.org/10.1177/0967391120968432.

    Article  CAS  Google Scholar 

  64. Fan, F., Cai, Y., Li, X., et al. 2014. Rape straw as a source of bio-oil via vacuum pyrolysis: Optimization of bio-oil yield using orthogonal design method and characterization of bio-oil. Journal of Analytical and Applied Pyrolysis 106: 63–70. https://doi.org/10.1016/j.jaap.2013.12.011.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Federal Ministry of Food and Agriculture (BMEL) based on a decision of the Parliament of Germany via Federal Office for Agriculture and Food (BLE). Dedicated to the memory of author Noble Banadda, who passed away when the adsorption experiments were being conducted.

Funding

Funding was received from Federal Ministry of Food and Agriculture (BMLE), NO. 2816PROCO04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isa Kabenge.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nsubuga, D., Kabenge, I., Zziwa, A. et al. Optimization of adsorbent dose and contact time for the production of jackfruit waste nutrient-enriched biochar. Waste Dispos. Sustain. Energy 5, 63–74 (2023). https://doi.org/10.1007/s42768-022-00123-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-022-00123-1

Keywords

Navigation