Skip to main content

Advertisement

Log in

Ar-plasma enhanced copper-nickel alloy catalysis for ammonia synthesis

  • Article
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

Ammonia (NH3) synthesis via electrocatalytic nitrogen reduction generally suffers from low NH3 yield and faradaic efficiency. Compared with activating stable, low-solubility N2, the electrochemical conversion of nitrates to ammonia provides a more reasonable route for NH3 production. Herein, we introduce Ar-plasma to enhance the interaction between copper-nickel alloys and carbon substrate to improve the performance of NH3 production. The NH3 faradaic efficiency from nitrate is nearly 100% and the yield rate is over 6000 \({\mathrm{\mu g}}_{{\mathrm{NH}}_{3}}{\mathrm{cm}}^{-2}{\mathrm{h}}^{-1}\). DFT (density functional theory) calculation reveals the high performance of Cu50Ni50 originates from the lower energy barrier on the reaction path and the closer position to the Fermi level of the d-band center. This work offers a promising strategy for plasma-modified electrocatalyst to promote ammonia synthesis via nitrate reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Foster, S.L., Perez-Bakovic, S.I., Duda, R.D., et al. 2018. Catalysts for nitrogen reduction to ammonia. Nature Catalysis 1: 490–500.

    Article  Google Scholar 

  2. Lee, H.K., Koh, C.S.L., Lee, Y.H., et al. 2018. Favoring the unfavored: selective electrochemical nitrogen fixation using a reticular chemistry approach. Science Advances 4: e3208.

    Article  Google Scholar 

  3. Shipman, M.A., and Symes, M.D. 2017. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catalysis Today 286: 57–68.

    Article  CAS  Google Scholar 

  4. Martín, A.J., and Pérez-Ramírez, J. 2019. Heading to distributed electrocatalytic conversion of small abundant molecules into fuels, chemicals, and fertilizers. Joule 3: 2602–2621.

    Article  Google Scholar 

  5. Zi, X., Wan, J., Yang, X., et al. 2021. Vacancy-rich 1T-MoS2 monolayer confined to MoO3 matrix: an interface-engineered hybrid for efficiently electrocatalytic conversion of nitrogen to ammonia. Applied Catalysis B: Environmental 286: 119870.

    Article  CAS  Google Scholar 

  6. Wang, C., Gu, L.-L., Qiu, S.-Y., et al. 2021. Modulating CoFe2O4 nanocube with oxygen vacancy and carbon wrapper towards enhanced electrocatalytic nitrogen reduction to ammonia. Applied Catalysis B: Environmental 297: 120452.

    Article  CAS  Google Scholar 

  7. Davidson, E.A., David, M.B., Galloway, J.N., et al. 2012. Excess nitrogen in the US environment: trends, risks, and solutions. Issues in Ecology 15: 1–16.

    Google Scholar 

  8. Rosca, V., Duca, M., de Groot, M.T., et al. 2009. Nitrogen cycle electrocatalysis. Chemical Reviews 109: 2209–2244.

    Article  CAS  Google Scholar 

  9. Seraj, S., Kunal, P., Li, H., et al. 2017. PdAu alloy nanoparticle catalysts: Effective candidates for nitrite reduction in water. ACS Catalysis 7: 3268–3276.

    Article  CAS  Google Scholar 

  10. Wang, D., He, N., Xiao, L., et al. 2021. Coupling electrocatalytic nitric oxide oxidation over carbon cloth with hydrogen evolution reaction for nitrate synthesis. Angewandte Chemie International Edition 46: 24605–24611.

    Article  Google Scholar 

  11. Chen, J.G., Crooks, R.M., Seefeldt, L.C., et al. 2018. Beyond fossil fuel-driven nitrogen transformations. Science 360: eaar6611.

    Article  Google Scholar 

  12. Hawtof, R., Ghosh, S., Guarr, E., et al. 2019. Catalyst-free, highly selective synthesis of ammonia from nitrogen and water by a plasma electrolytic system. Science Advances 5: eaat5778.

    Article  Google Scholar 

  13. Singh, A.R., Rohr, B.A., Schwalbe, J.A., et al. 2017. Electrochemical ammonia synthesis-the selectivity challenge. ACS Catalysis 7: 706–709.

    Article  CAS  Google Scholar 

  14. Dima, G.E., de Vooys, A.C.A., and Koper, M.T.M. 2003. Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. Journal of Electroanalytical Chemistry 554: 15–23.

    Article  Google Scholar 

  15. McEnaney, J.M., Blair, S.J., Nielander, A.C., et al. 2020. Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode. ACS Sustainable Chemistry & Engineering. 8: 2672–2681.

    Article  CAS  Google Scholar 

  16. Wang, Y., Aoni, X., Wang, Z., et al. 2020. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. Journal of the American Chemical Society 142: 5702–5708.

    Article  CAS  Google Scholar 

  17. Fu, X., Zhao, X., Hu, X., et al. 2020. Alternative route for electrochemical ammonia synthesis by reduction of nitrate on copper nanosheets. Applied Materials Today 19: 100620.

    Article  Google Scholar 

  18. Perdew, J.P., Burke, K., and Ernzerhof, M. 1996. Generalized gradient approximation made simple. Physical Review Letters 77: 3865.

    Article  CAS  Google Scholar 

  19. Wang, V., Xu, N., Liu, J.C., et al. 2021. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Computer Physics Communications. 267: 108033.

    Article  CAS  Google Scholar 

  20. Dumitrascu, N., Topala, I., and Popa, C. 2005. Dielectric barrier discharge technique in improving the wettability and adhesion properties of polymer surfaces. IEEE Transactions on Plasma Science 33: 1710–1714.

    Article  CAS  Google Scholar 

  21. Wu, A., Yang, J., Xu, B., et al. 2021. Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis. Applied Catalysis B: Environmental 299: 120667.

    Article  CAS  Google Scholar 

  22. Niu, H., Zhang, Z., Wang, X., et al. 2021. Theoretical insights into the mechanism of selective nitrate-to-ammonia electroreduction on single-atom catalysts. Advanced Functional Materials 31: 2008533.

    Article  CAS  Google Scholar 

  23. Nørskov, J.K., Bligaard, T., Logadottir, A., et al. 2005. Trends in the exchange current for hydrogen evolution. Journal of the Electrochemical Society 24: 23–26.

    Article  Google Scholar 

  24. Figueiredo, M.C., Solla-Gullón, J., Vidal-Iglesias, F.J., et al. 2013. Nitrate reduction at Pt(100) single crystals and preferentially oriented nanoparticles in neutral media. Catalysis Today 202: 2–11.

    Article  CAS  Google Scholar 

  25. Pérez-Gallent, E., Figueiredo, M.C., and Katsounaros, I. 2017. Electrocatalytic reduction of Nitrate on Copper single crystals in acidic and alkaline solutions. Electrochimica Acta 227: 77–84.

    Article  Google Scholar 

  26. Da Cunha, M.C.P.M., de Souza, J.P.I., and Nart, F.C. 2000. Reaction pathways for reduction of nitrate ions on platinum, rhodium, and platinum-rhodium alloy electrodes. Langmuir 16: 771–777.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51976191) and the State Key Laboratory of Clean Energy Utilization (No. ZJUCEU2021003), Ecological civilization project, Zhejiang University and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Yaqi or Li Xiaodong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yimeng, Z., Jiabao, L., Yaqi, P. et al. Ar-plasma enhanced copper-nickel alloy catalysis for ammonia synthesis. Waste Dispos. Sustain. Energy 4, 149–155 (2022). https://doi.org/10.1007/s42768-022-00095-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-022-00095-2

Keywords

Navigation