Skip to main content

Advertisement

Log in

Functional–Structural Integrated Aramid Nanofiber-based Honeycomb Materials with Ultrahigh Strength and Multi-Functionalities

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Multifunctional microwave-absorbing (MA) honeycombs are in urgent demand both in civil and military fields, while they often suffer from great limitations due to the complicated preparation process, inferior strength, and the susceptible peeling off of the absorbent coatings. Herein, we develop a straightforward strategy of assembly of aramid nanofibers (ANFs) and MXene nanosheets to honeycombs, obtaining a functional–structural integrated microwave absorption aramid honeycomb (MAAH). Benefiting from the robust and integrated cell nodes and dense network structure, the compressive strength and toughness of ANF honeycomb can reach up to 18.6 MPa and 2.0 MJ m−3, respectively, which is 6 times and 25 times higher than that of commercial honeycomb. More importantly, the synergistic effect of the unique three-dimensional (3D) conductive network formed by uniformly distributed MXene and the hierarchical structure of the honeycomb endow it with superior wave-absorbing performance, which exhibits a minimum reflection loss (RLmin) of −38.5 dB at a thickness of only 1.9 mm, and covering almost the entire X-band bandwidth. Additionally, MAAH presents exceptional infrared thermal stealth, sound absorption performance, and real-time monitoring of structural integrity. Therefore, these impressive multi-functionalities of MAAH with outstanding wave-absorbing performance, ultrahigh strength, along with the straightforward and easy-to-scalable and recyclable manufacturing technique, demonstrating promising perspectives of the MAAH materials in aerospace and military fields.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zhang Q, Yang X, Li P, Huang G, Feng S, Shen C, Han B, Zhang X, Jin F, Xu F, Lu TJ. Bioinspired engineering of honeycomb structure-using nature to inspire human innovation. Prog Mater Sci. 2015;74:332.

    Article  Google Scholar 

  2. Wu F, Srot V, Chen S, Lorger S, van Aken PA, Maier J, Yu Y. 3d honeycomb architecture enables a high-rate and long-life iron (iii) fluoride-lithium battery. Adv Mater. 2019;31:1905146.

    Article  CAS  Google Scholar 

  3. Ren ZW, Cheng YH, Chen MJ, Yuan XJ, Fang DN. A compact multifunctional metastructure for low-frequency broadband sound absorption and crash energy dissipation. Mater Des. 2022;215:110462.

    Article  Google Scholar 

  4. Choi HS, Jang YH. Bondline strength evaluation of cocure/precured honeycomb sandwich structures under aircraft hygro and repair environments. Compos A. 2010;41:1138.

    Article  Google Scholar 

  5. Sun GH, Zhang JH, Zhang H, Yang ZL, Fu X, Wang J, Han SH. Research on acoustic absorption properties of aramid honeycomb composite material reinforced by polyimide foam. Adv Eng Mater. 2022;24:2101158.

    Article  CAS  Google Scholar 

  6. Ahmad S, Zhang J, Feng P, Yu D, Wu Z, Ke M. Processing technologies for nomex honeycomb composites (nhcs): a critical review. Compos Struct. 2020;250:112545.

    Article  Google Scholar 

  7. Xia T, Zhang C, Oyler NA, Chen X. Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. Adv Mater. 2013;25:6905.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao Z, Qing Y, Kong L, Xu H, Fan X, Yun J, Zhang L, Wu H. Advancements in microwave absorption motivated by interdisciplinary research. Adv Mater. 2023;36:2304182.

    Article  Google Scholar 

  9. Liu JW, Che RC, Chen HJ, Zhang F, Xia F, Wu QS, Wang M. Microwave absorption enhancement of multifunctional composite microspheres with spinel Fe3O4 cores and anatase TiO2 shells. Small. 2012;8:1214.

    Article  CAS  PubMed  Google Scholar 

  10. Xu CY, Luo KC, Du YQ, Zhang HB, Lv XW, Lv HL, Zhang RX, Zhang C, Zhang JC, Che RC. Anisotropic interfaces support the confined growth of magnetic nanometer-sized heterostructures for electromagnetic wave absorption. Adv Funct Mater. 2023;33:2307529.

    Article  CAS  Google Scholar 

  11. Cheng J, Zhang H, Ning M, Raza H, Zhang D, Zheng G, Zheng Q, Che R. Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Adv Funct Mater. 2022;32:2200123.

    Article  CAS  Google Scholar 

  12. Tang Z, Xu L, Xie C, Guo L, Zhang L, Guo S, Peng J. Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat Commun. 2023;14:5951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iqbal A, Shahzad F, Hantanasirisakul K, Kim M-K, Kwon J, Hong J, Kim H, Kim D, Gogotsi Y, Koo CM. Anomalous absorption of electromagnetic waves by 2d transition metal carbonitride Ti3CNTx (MXene). Science. 2020;369:446.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng H, Pan Y, Wang X, Liu C, Shen C, Schubert DW, Guo Z, Liu X. Correction to: Ni flower/mxene-melamine foam derived 3d magnetic/conductive networks for ultra-efficient microwave absorption and infrared stealth. Nano-Micro Lett. 2022;14:116.

    Article  Google Scholar 

  15. Luo H, Chen F, Wang X, Dai WY, Xiong Y, Yang JJ, Gong RZ. A novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption. Compos A. 2019;119:1.

    Article  CAS  Google Scholar 

  16. Bi S, Song YZ, Hou GL, Li H, Liu ZH, Hou ZL, Zhang JY. Sandwich nanoarchitectonics of heterogenous cb/cnts honeycomb composite for impedance matching design and microwave absorption. J Alloys Compd. 2023;943:169154.

    Article  CAS  Google Scholar 

  17. Wang H, Xiu X, Wang Y, Xue Q, Ju WB, Che WQ, Liao SW, Jiang HY, Tang M, Long J, Hu J. Paper-based composites as a dual-functional material for ultralight broadband radar absorbing honeycombs. Compos B. 2020;202:108378.

    Article  CAS  Google Scholar 

  18. Lu JY, Zhang HR, Yuan MS, Gao YF, Liang M, Chen Y, Zou HW. Achieving super broadband microwave absorption of aramid honeycomb by filling optimized 3d conductive rgo/melamine foam. Compos A. 2023;168:107447.

    Article  CAS  Google Scholar 

  19. Lu JY, Zhang HR, Yuan MS, Di XC, Ni L, Luo YF, Chen Y, Zou HW. In-situ flowering of rgo with 3d distribution: towards super-broadband microwave absorption and ultralight synergy in aramid honeycomb. Carbon. 2023;211:118119.

    Article  CAS  Google Scholar 

  20. Wang L, Zhang M, Yang B, Tan J, Ding X. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano. 2020;14:10633.

    Article  CAS  PubMed  Google Scholar 

  21. Yang B, Wang L, Zhang MY, Luo JJ, Ding XY. Timesaving, high-efficiency approaches to fabricate aramid nanofibers. ACS Nano. 2019;13:7886.

    Article  CAS  PubMed  Google Scholar 

  22. Yang B, Wang L, Zhang MY, Luo JJ, Lu ZQ, Ding XY. Fabrication, applications, and prospects of aramid nanofiber. Adv Funct Mater. 2020;30:2000186.

    Article  CAS  Google Scholar 

  23. Ji DX, Song SX, Lyu Y, Ren W, Li LH, Yang B, Zhang MY. Novel fabrication of basalt nanosheets with ultrahigh aspect ratios toward enhanced mechanical and dielectric properties of aramid nanofiber-based composite nanopapers. Adv Sci. 2023;10:2302371.

    Article  CAS  Google Scholar 

  24. Yang B, Wang H, Zhang M, Jia F, Liu Y, Lu Z. Mechanically strong, flexible, and flame-retardant Ti3C2Tx MXene-coated aramid paper with superior electromagnetic interference shielding and electrical heating performance. Chem Eng J. 2023;476:146834.

    Article  CAS  Google Scholar 

  25. Zhang Z, Yang S, Zhang PP, Zhang J, Chen GB, Feng XL. Mechanically strong MXene/kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat Commun. 2019;10:2920.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Wong E, Mai Z, Van der Bruggen B. Fabrication of composite polyamide/kevlar aramid nanofiber nanofiltration membranes with high permselectivity in water desalination. J Membr Sci. 2019;592:117396.

    Article  Google Scholar 

  27. Zhou Q, Lyu J, Wang G, Robertson M, Qiang Z, Sun B, Ye C, Zhu M. Mechanically strong and multifunctional hybrid hydrogels with ultrahigh electrical conductivity. Adv Funct Mater. 2021;31:2104536.

    Article  CAS  Google Scholar 

  28. Li J, Wang C, Han X, Liu S, Gao X, Guo C, Wu X. Aramid nanofibers-reinforced rhein fibrous hydrogels as antibacterial and anti-inflammatory burn wound dressings. ACS Appl Mater Interfaces. 2022;14:45167.

    Article  CAS  PubMed  Google Scholar 

  29. He HM, Wei X, Yang B, Liu HZ, Sun MZ, Li YR, Yan AX, Tang CYY, Lin Y, Xu LZ. Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers. Nat Commun. 2022;13:4242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xie CJ, Guo ZX, Qiu T, Tuo XL. Construction of aramid engineering materials via polymerization-induced-aramid nanofiber hydrogel. Adv Mater. 2021;33:2101280.

    Article  CAS  Google Scholar 

  31. Li M, Chen X, Li X, Dong J, Zhao X, Zhang Q. Controllable strong and ultralight aramid nanofiber-based aerogel fibers for thermal insulation applications. Adv Fiber Mater. 2022;4:1267.

    Article  CAS  Google Scholar 

  32. Wang CY, Ma SQ, Li DD, Zhao JY, Zhou HW, Wang DM, Liu CW, Wang SL, Chen CH. Direct ink writing of thermoresistant, lightweight composite polyimide honeycombs with tunable X-band electromagnetic wave absorption properties. Addit Manuf. 2023;70:103554.

    CAS  Google Scholar 

  33. Wang CY, Ma SQ, Li DD, Zhao JY, Zhou HW, Wang DZ, Zhou DP, Gan TH, Wang DM, Liu CW, Qu CY, Chen CH. 3D printing of lightweight polyimide honeycombs with the high specific strength and temperature resistance. ACS Appl Mater Interfaces. 2021;13:15690.

    Article  CAS  PubMed  Google Scholar 

  34. Yildizel SA, Toktas A. Abc algorithm-based optimization and evaluation of nano carbon black added multi-layer microwave absorbing ultra weight foam concrete. Mater Today Commun. 2022;32:104035.

    Article  CAS  Google Scholar 

  35. Yan M, Cheng X, Gong L, Lun Z, He P, Shi L, Liu C, Pan Y. Growth mechanism and structure regulation of super-elastic sic aerogels for thermal insulation and electromagnetic wave absorption. Chem Eng J. 2023;475:146417.

    Article  CAS  Google Scholar 

  36. Wang Y, Qu Z, Wang W, Qian H, Song X, Yu D. Multidimensional nanomaterials synergistic polyimide nanofiber/MXene/NiFe2O4 hybrid aerogel for high-performance microwave absorption. Chem Eng J. 2023;470:144435.

    Article  CAS  Google Scholar 

  37. Yue L, Yang YY, Zhou Q, Lei Y, Deng G, Yang TT. Broadband electromagnetic wave absorbing performance by designing the foam structure and double-layer for cement-based composites containing mwcnts. Cem Concr Compos. 2022;131:104595.

    Article  CAS  Google Scholar 

  38. Li X, Zhu L, Su Z, Li X, Yu W, Liu J, Lv C. Microwave absorbing performance and temperature resistance of multifunctional foamed ceramics prepared by the sintering method. Ceram Int. 2023;49:34992.

    Article  CAS  Google Scholar 

  39. Huang Z, Qin R, Zhang H, Guo MY, Zhang DY, Gao CQ, Gao F, Chen XC, Terrones M, Wang YQ. Ambient-drying to construct unidirectional cellulose nanofibers/carbon nanotubes aerogel with ultra-lightweight, robust, and superior microwave absorption performance. Carbon. 2023;212:118150.

    Article  CAS  Google Scholar 

  40. Chen C, Xi JB, Zhou EZ, Peng L, Chen ZC, Gao C. Porous graphene microflowers for high-performance microwave absorption. Nano-Micro Lett. 2018;10:26.

    Article  Google Scholar 

  41. Song Q, Ye F, Kong L, Shen QL, Han LY, Feng L, Yu GJ, Pan YN, Li HJ. Graphene and MXene nanomaterials: toward high-performance electromagnetic wave absorption in gigahertz band range. Adv Funct Mater. 2020;30:2000457.

    Article  Google Scholar 

  42. Wu Z, Cheng HW, Jin C, Yang B, Xu C, Pei K, Zhang H, Yang Z, Che R. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv Mater. 2022;34:2107538.

    Article  CAS  Google Scholar 

  43. Qin M, Zhang LM, Wu HJ. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv Sci. 2022;9:2105553.

    Article  CAS  Google Scholar 

  44. Lv HL, Yang ZH, Pan HG, Wu RB. Electromagnetic absorption materials: current progress and new frontiers. Prog Mater Sci. 2022;127:100946.

    Article  CAS  Google Scholar 

  45. Zhang Y, Huang Y, Zhang TF, Chang HC, Xiao PS, Chen HH, Huang ZY, Chen YS. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater. 2015;27:2049.

    Article  CAS  PubMed  Google Scholar 

  46. Gao Z, Ma Z, Lan D, Zhao Z, Zhang L, Wu H, Hou Y. Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv Funct Mater. 2022;32:2112294.

    Article  CAS  Google Scholar 

  47. Han MK, Yin XW, Kong L, Li M, Duan WY, Zhang LT, Cheng LF. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J Mater Chem A. 2014;2:16403.

    Article  CAS  Google Scholar 

  48. Zhang ZW, Cai ZH, Zhang Y, Peng YL, Wang ZY, Xia L, Ma SP, Yin ZZ, Wang RF, Cao YS, Li Z, Huang Y. The recent progress of MXene-based microwave absorption materials. Carbon. 2021;174:484.

    Article  CAS  Google Scholar 

  49. Lv HL, Guo YH, Zhao Y, Zhang HQ, Zhang BS, Ji GB, Xu ZCJ. Achieving tunable electromagnetic absorber via graphene/carbon sphere composites. Carbon. 2016;110:130.

    Article  CAS  Google Scholar 

  50. Liu WW, Li H, Zeng QP, Duan HN, Guo YP, Liu XF, Sun CY, Liu HZ. Fabrication of ultralight three-dimensional graphene networks with strong electromagnetic wave absorption properties. J Mater Chem A. 2015;3:3739.

    Article  CAS  Google Scholar 

  51. Wei HW, Dong JD, Fang XJ, Zheng WH, Sun YT, Qian Y, Jiang ZX, Huang YD. Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption. Compos Sci Technol. 2019;169:52.

    Article  CAS  Google Scholar 

  52. Li X, You WB, Xu CY, Wang L, Yang LT, Li YS, Che RC. 3d seed-germination-like mxene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nano-Micro Lett. 2021;13:157.

    Article  CAS  Google Scholar 

  53. Dong C, Li D, Wang H, Cai B, Xin Y, Peng H, Zhao Y, Wang N, Cui Z, Wang G. CoSe2@polythiophene core-shell composites with enhanced interfacial polarization for high-performance broadband electromagnetic absorption. Carbon. 2023;215:118459.

    Article  CAS  Google Scholar 

  54. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM, Gogotsi Y. Electromagnetic interference shielding with 2d transition metal carbides (MXenes). Science. 2016;353:1137.

    Article  CAS  PubMed  Google Scholar 

  55. Wang HY, Sun XB, Xin Y, Yang SH, Hu PF, Wang GS. Ultrathin self-assembly MXene/Co-based bimetallic oxide heterostructures as superior and modulated microwave absorber. J Mater Sci Technol. 2023;134:132.

    Article  CAS  Google Scholar 

  56. Chang M, Li QY, Jia ZR, Zhao WR, Wu GL. Tuning microwave absorption properties of Ti3C2Tx mxene-based materials: Component optimization and structure modulation. J Mater Sci Technol. 2023;148:150.

    Article  CAS  Google Scholar 

  57. Liu J, Zhang L, Zang D, Wu H. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv Funct Mater. 2021;31:2105018.

    Article  CAS  Google Scholar 

  58. Ma WJ, He P, Wang TY, Xu J, Liu XY, Zhuang QX, Cui ZK, Lin SL. Microwave absorption of carbonization temperature-dependent uniform yolk-shell H-Fe3O4@C microspheres. Chem Eng J. 2021;420:129875.

    Article  CAS  Google Scholar 

  59. Li X, Yin X, Song C, Han M, Xu H, Duan W, Cheng L, Zhang L. Self-assembly core-shell graphene-bridged hollow MXenes spheres 3D foam with ultrahigh specific EM absorption performance. Adv Funct Mater. 2018;28:1803938.

    Article  Google Scholar 

  60. Zhou Y, Wang SJ, Li DS, Jiang L. Lightweight and recoverable ANF/RGO/PI composite aerogels for broad and high-performance microwave absorption. Compos B. 2021;213:108701.

    Article  CAS  Google Scholar 

  61. Yang F, Yao JR, Jin LQ, Huyan WJ, Zhou JT, Yao ZJ, Liu PJ, Tao XW. Multifunctional Ti3C2Tx MXene/aramid nanofiber/polyimide aerogels with efficient thermal insulation and tunable electromagnetic wave absorption performance under thermal environment. Compos B. 2022;243:110161.

    Article  CAS  Google Scholar 

  62. Cui Y, Gong H, Wang Y, Li D, Bai H. Thermal insulation: a thermally insulating textile inspired by polar bear hair. Adv Mater. 2018;30:1870098.

    Article  Google Scholar 

  63. Li XW, Yu X, Zhai W. Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels. Adv Mater. 2021;33:2104552.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Project of Shaanxi Province (2024GX-YBXM-331), Shaanxi Provincial Innovation Capability Support Program Project (Program No. 2023KJXX-047), and National Natural Science Foundation of China (Program No. 22278260). Thanks to Ms. Yingying Zhou from Xi’an Polytechnic University for her kind help in the test of microwave absorption property.

Funding

This study was funded by Key Research and Development Project of Shaanxi Province, 2024GX-YBXM-331, Bin Yang, Shaanxi Provincial Innovation Capability Support Program Project, 2023KJXX-047, Bin Yang, National Natural Science Foundation of China, 22278260, Meiyun Zhang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Yang or Meiyun Zhang.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 9494 KB)

Supplementary file2 (MP4 5185 KB)

Supplementary file3 (MP4 22599 KB)

Supplementary file4 (MP4 8764 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, H., Yang, B. & Zhang, M. Functional–Structural Integrated Aramid Nanofiber-based Honeycomb Materials with Ultrahigh Strength and Multi-Functionalities. Adv. Fiber Mater. (2024). https://doi.org/10.1007/s42765-024-00411-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42765-024-00411-x

Keywords

Navigation