Skip to main content

Advertisement

Log in

High-Performance Cellulose Nanofibers/Carbon Nanotubes Composite for Constructing Multifunctional Sensors and Wearable Electronics

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

The green preparation of highly dispersed carbon nanotube (CNT) conductive inks remains a critical challenge in the field of flexible electronics. Herein, a waterborne CNT dispersion approach mediated by carboxylated cellulose nanofibers (C-CNFs) was proposed. CNFs, special biomass materials with excellent nanostructures and abundant active surface groups, are used as green dispersants. During the dispersion process, benefiting from chemical charge and dimensional matching, C-CNF/CNT wicking-driven stable composite structures (CCNTs) were co-assembled via hydrogen bonding, electrostatic stabilization and π–π stacking between the interfaces, generating controlled orientational structures and promoting stable dispersion and conductivity of CNTs, which were demonstrated via molecular dynamics simulations combined with a variety of physicochemical characterization methods. The dispersion concentration of CNTs in a CCNT slurry can reach 80 wt%, and the obtained CCNT slurry has a low zeta potential (less than − 60 mV) and good stability. Due to the film-forming properties of CNFs and in-plane oriented self-assembly of CCNT, the composite self-supporting films were fabricated with high electrical conductivity (67 S cm−1) and mechanical performance (tensile strength of 153 MPa). In addition, the resulting biobased CCNT ink is compatible with a variety of printing processes and adaptable to various substrates. Moreover, this ink can be used to construct multifunctional advanced sensors with electrochemical, electrothermal, and deformation/piezoresistive responses, which demonstrate excellent performance in monitoring human health.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional fiber materials to smart fiber devices. Chem Rev. 2022;123:613–62.

    Article  PubMed  Google Scholar 

  2. Lin M, Hu H, Zhou S, Xu S. Soft wearable devices for deep-tissue sensing. Nat Rev Mater. 2022;7:850–69.

    Article  Google Scholar 

  3. Zhao D, Zhu Y, Cheng W, Chen W, Wu Y, Yu H. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater. 2021;33: e2000619.

    Article  PubMed  Google Scholar 

  4. Owens CE, Headrick RJ, Williams SM, Fike AJ, Pasquali M, McKinley GH, Hart AJ. Substrate-versatile direct-write printing of carbon nanotube-based flexible conductors, circuits, and sensors. Adv Func Mater. 2021;31:2100245.

    Article  CAS  Google Scholar 

  5. Qiao L, Du K. Scalable production of high-quality carbon nanotube dispersion in aqueous solution using cellulose as dispersant by a freezing/thawing process. J Colloid Interface Sci. 2022;623:1200–9.

    Article  CAS  Google Scholar 

  6. Zhang S, Hua C, He B, Chang P, Du M, Liu Y. High-conductivity, stable Ag/cellulose paper prepared via in situ reduction of fractal-structured silver particles. Carbohydr Polym. 2021;262: 117923.

    Article  CAS  PubMed  Google Scholar 

  7. Kinloch IA, Suhr J, Lou J, Young RJ, Ajayan PM. Composites with carbon nanotubes and graphene. An outlook. Science. 2018;362:547–53.

    Article  CAS  PubMed  Google Scholar 

  8. Rivadeneyra A, Marín-Sánchez A, Wicklein B, Salmerón JF, Castillo E, Bobinger M, Salinas-Castillo A. Cellulose nanofibers as substrate for flexible and biodegradable moisture sensors. Compos Sci Technol. 2021;208: 108738.

    Article  CAS  Google Scholar 

  9. Alam MN, Kumar V, Lee D-J, Choi J. Synergistically toughened silicone rubber nanocomposites using carbon nanotubes and molybdenum disulfide for stretchable strain sensors. Compos Part B-Eng. 2023;259: 110759.

    Article  CAS  Google Scholar 

  10. Xu T, Du H, Liu H, Liu W, Zhang X, Si C, Liu P, Zhang K. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater. 2021;33:2101368.

    Article  CAS  Google Scholar 

  11. Lyu S, Chang H, Zhang L, Wang S, Li S, Lu Y, Li S. High specific surface area MXene/SWCNT/cellulose nanofiber aerogel film as an electrode for flexible supercapacitors. Compos Part B-Eng. 2023;264: 110888.

    Article  CAS  Google Scholar 

  12. Zhao D, Liu R, Luo C, Guo Y, Hou C, Zhang Q, Li Y, Jia W, Wang H. Dielectrophoretic assembly of carbon nanotube chains in aqueous solution. Adv Fiber Mater. 2021;3:312.

    Article  CAS  Google Scholar 

  13. Gao C, Guo M, Liu Y, Zhang D, Gao F, Sun L, Li J, Chen X, Terrones M, Wang Y. Surface modification methods and mechanisms in carbon nanotubes dispersion. Carbon. 2023;212: 118113.

    Article  Google Scholar 

  14. Miyashiro D, Hamano R, Umemura K. A review of applications using mixed materials of cellulose, nanocellulose and carbon nanotubes. Nanomaterials (Basel). 2020;10:186.

    Article  CAS  PubMed  Google Scholar 

  15. Yoon H, Thompson R, Hwang B. Dispersibility study of carbon nanotubes using multiple light scattering: a mini-review. J Colloid Interface Sci. 2023;52: 100686.

    Article  CAS  Google Scholar 

  16. Rennhofer H, Zanghellini B. Dispersion state and damage of carbon nanotubes and carbon nanofibers by ultrasonic dispersion: a review. Nanomaterials (Basel). 2021;11:1469.

    Article  CAS  PubMed  Google Scholar 

  17. Oh S-H, Altug H, Jin X, Low T, Koester SJ, Ivanov AP, Edel JB, Avouris P, Strano MS. Nanophotonic biosensors harnessing van der Waals materials. Nat Commun. 2021;12:3824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karousis N, Tagmatarchis N, Tasis D. Current progress on the chemical modification of carbon nanotubes. Chem Rev. 2010;110:5366–97.

    Article  CAS  PubMed  Google Scholar 

  19. Xu S, Zhang Y, Zhu Y, Wu J, Li K, Lin G, Li X, Liu R, Liu X, Wong C-P. Facile one-step fabrication of glucose oxidase loaded polymeric nanoparticles decorating MWCNTs for constructing glucose biosensing platform: structure matters. Biosens Bioelectron. 2019;135:153–9.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang D, Song W, Lv L, Gao C, Gao F, Guo H, Diao R, Dai W, Niu J, Chen X, Wei J, Terrones M, Wang Y. Mono-dispersion decorated ultra-long single-walled carbon nanotube/aramid nanofiber for high-strength electromagnetic interference shielding film with Joule heating properties. Carbon. 2023;214: 118315.

    Article  CAS  Google Scholar 

  21. Liu L, Chang D, Gao C. A review of multifunctional nanocomposite fibers: design, preparation and applications. Adv Fiber Mater. 2023;3:1–38.

    CAS  Google Scholar 

  22. Hajian A, Lindstrom SB, Pettersson T, Hamedi MM, Wagberg L. Understanding the dispersive action of nanocellulose for carbon nanomaterials. Nano Lett. 2017;17:1439–47.

    Article  CAS  PubMed  Google Scholar 

  23. Zeng Z, Wang C, Wu T, Han D, Luković M, Pan F, Siqueira G, Nyström G. Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. J Mater Chem A. 2020;8:17969–79.

    Article  CAS  Google Scholar 

  24. Thakur A, Devi P. Paper-based flexible devices for energy harvesting, conversion and storage applications: a review. Nano Energy. 2022;94: 106927.

    Article  CAS  Google Scholar 

  25. Feng X, Wang X, Zhang C, Dang C, Chen Y, Qi H. Highly conductive and multifunctional nanocomposites based on sulfated nanocellulose-assisted high dispersion limit of single-walled carbon nanotubes. Carbon. 2021;183:187–95.

    Article  CAS  Google Scholar 

  26. De France K, Zeng Z, Wu T, Nystrom G. Functional materials from nanocellulose: utilizing structure-property relationships in bottom-up fabrication. Adv Mater. 2021;33: e2000657.

    Article  PubMed  Google Scholar 

  27. Li Y, Zhu H, Wang Y, Ray U, Zhu S, Dai J, Chen C, Fu K, Jang SH, Henderson D, Li T, Hu L. Cellulose-nanofiber-enabled 3D printing of a carbon-nanotube microfiber network. Small Methods. 2017;1:1700222.

    Article  Google Scholar 

  28. Liu Y, Zhang S, Lin R, Li L, Li M, Du M, Tang R. Potassium permanganate oxidation as a carboxylation and defibrillation method for extracting cellulose nanofibrils to fabricate films with high transmittance and haze. Green Chem. 2021;23:8069–78.

    Article  CAS  Google Scholar 

  29. Liu Y, Zhang S, Li L, Coseri S. Cellulose nanofiber extraction from unbleached kraft pulp for paper strengthening. Cellulose. 2023;3:3219–35.

    Article  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph Model. 1996;14:33–8.

    Article  CAS  Google Scholar 

  31. Daicho K, Saito T, Fujisawa S, Isogai A. Crystallinity of nanocellulose: dispersion-induced disordering of the grain boundary in biologically structured cellulose. ACS Appl Nano Mater. 2018;1:5774–85.

    Article  CAS  Google Scholar 

  32. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: Fast, flexible, and free. J Comput Chem. 2005;26:1701–18.

    Article  PubMed  Google Scholar 

  33. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–93.

    Article  CAS  Google Scholar 

  34. Kirschner KN, Yongye AB, Tschampel SM, González-Outeiriño J, Daniels CR, Foley BL, Woods RJ. GLYCAM06: a generalizable biomolecular force field. J Comput Chem. 2008;29:622–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–74.

    Article  CAS  PubMed  Google Scholar 

  36. Jorgensen WL. Monte Carlo simulation of n-butane in water. Conformational evidence for the hydrophobic effect. J Chem Phys. 1982;77:5757–65.

    Article  CAS  Google Scholar 

  37. Caddeo C, Pucci L, Gabriele M, Carbone C, Fernandez-Busquets X, Valenti D, Pons R, Vassallo A, Fadda AM, Manconi M. Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. Int J Pharm. 2018;538:40–7.

    Article  CAS  PubMed  Google Scholar 

  38. Abo-Hamad A, Hayyan M, AlSaadi MA, Mirghani MES, Hashim MA. Functionalization of carbon nanotubes using eutectic mixtures: a promising route for enhanced aqueous dispersibility and electrochemical activity. Chem Eng J. 2017;311:326–39.

    Article  CAS  Google Scholar 

  39. Bratko D, Jönsson B, Wennerström H. Electrical double layer interactions with image charges. Chem Phys Lett. 1986;168:449–54.

    Article  Google Scholar 

  40. Fujisawa S, Okita Y, Fukuzumi H, Saito T, Isogai A. Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym. 2011;84:579–83.

    Article  CAS  Google Scholar 

  41. Li C, Guo J, Jiang T, Zhang X, Xia L, Wu H, Guo S, Zhang X. Extensional flow-induced hybrid crystalline fibrils (shish) in CNT/PLA nanocomposite. Carbon. 2018;129:720–9.

    Article  CAS  Google Scholar 

  42. Singh D, Rawal A. Tensile mechanics of buckypaper: bridging the disconnect between disordered structure and carbon nanotube properties. Carbon. 2022;190:299–311.

    Article  CAS  Google Scholar 

  43. Zhu P, Kuang Y, Wei Y, Li F, Ou H, Jiang F, Chen G. Electrostatic self-assembly enabled flexible paper-based humidity sensor with high sensitivity and superior durability. Chem Eng J. 2021;404: 127105.

    Article  CAS  PubMed  Google Scholar 

  44. Fang D, Zhou J, Sheng L, Tang W, Tang J. Juglone bonded carbon nanotubes interweaving cellulose nanofibers as self-standing membrane electrodes for flexible high energy supercapacitors. Chem Eng J. 2020;396: 125325.

    Article  CAS  Google Scholar 

  45. Huang H-D, Liu C-Y, Zhang L-Q, Zhong G-J, Li Z-M. Simultaneous reinforcement and toughening of carbon nanotube/cellulose conductive nanocomposite films by interfacial hydrogen bonding. ACS Sustain Chem Eng. 2015;3:317–24.

    Article  CAS  Google Scholar 

  46. Lin F, Wang Z, Chen J, Lu B, Tang L, Chen X, Lin C, Huang B, Zeng H, Chen Y. A bioinspired hydrogen bond crosslink strategy toward toughening ultrastrong and multifunctional nanocomposite hydrogels. J Mater Chem B. 2020;8:4002–15.

    Article  CAS  PubMed  Google Scholar 

  47. Sun Z, Zheng B, Chen C, Dong Z, Ma P. Synergistically enhancing weavability and interface behavior by applying PDMS/MXene on carbon fiber surface through ultrasound assistance. Compos Part B Eng. 2023;267: 111071.

    Article  CAS  Google Scholar 

  48. Huang YY, Terentjev EM. Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers. 2012;4:275–95.

    Article  Google Scholar 

  49. Batista CA, Larson RG, Kotov NA. Nonadditivity of nanoparticle interactions. Science. 2015;350:1242477.

    Article  PubMed  Google Scholar 

  50. Fukui T, Garcia-Hernandez JD, MacFarlane LR, Lei S, Whittell GR, Manners I. Seeded self-assembly of charge-terminated poly(3-hexylthiophene) amphiphiles based on the energy landscape. J Am Chem Soc. 2020;142:15038–48.

    Article  CAS  PubMed  Google Scholar 

  51. Li C, Lan C, Guo M, Wang N, Ma Y. Wicking-driven evaporation self-assembly of carbon nanotubes on fabrics: generating controlled orientational structures. Langmuir. 2020;36:13963–70.

    Article  CAS  PubMed  Google Scholar 

  52. Pritchard CQ, Funk G, Owens J, Stutz S, Gooneie A, Sapkota J, et al. Adjustable film properties of cellulose nanofiber and cellulose nanocrystal composites. Carbohydr Polym. 2022;286: 119283.

    Article  CAS  PubMed  Google Scholar 

  53. Guan QF, Han ZM, Yang KP, Yang HB, Ling ZC, Yin CH, Yu SH. Sustainable double-network structural materials for electromagnetic shielding. Nano Lett. 2021;21:2532–7.

    Article  CAS  PubMed  Google Scholar 

  54. Goetz LA, Naseri N, Nair SS, Karim Z, Mathew AP. All cellulose electrospun water purification membranes nanotextured using cellulose nanocrystals. Cellulose. 2018;25:3011–23.

    Article  CAS  Google Scholar 

  55. Gu X, Fan Q, Yang F, Cai L, Zhang N, Zhou W, Zhou W, Xie S. Hydro-actuation of hybrid carbon nanotube yarn muscles. Nanoscale. 2016;8:17881–6.

    Article  CAS  PubMed  Google Scholar 

  56. Dai S, Chu Y, Liu D, Cao F, Wu X, Zhou J, Zhou B, Chen Y, Huang J. Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors. Nat Commun. 2018;9:2737.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Liu Y, Zhang S, Hua C, Li N, Li L. Silver-based conductive films on the filter paper template with the interfacial aid of PEI. Cellulose. 2023;30:509–24.

    Article  CAS  Google Scholar 

  58. Cui Y, He X, Liu W, Zhu S, Zhou M, Wang Q. Highly stretchable, sensitive, and multifunctional thermoelectric fabric for synergistic-sensing systems of human signal monitoring. Adv Fiber Mater. 2023;13:1–11.

    Google Scholar 

  59. Wang L, Zhang M, Yang B, Ding X, Tan J, Song S, Nie J. Flexible, robust, and durable aramid fiber/CNT composite paper as a multifunctional sensor for wearable applications. ACS Appl Mater Inter. 2021;13:5486–97.

    Article  CAS  Google Scholar 

  60. Wang Q, Sheng H, Lv Y, Liang J, Liu Y, Li N, Xie E, Su Q, Ershad F, Lan W, Wang J, Yu C. A skin-mountable hyperthermia patch based on metal nanofiber network with high transparency and low resistivity toward subcutaneous tumor treatment. Adv Funct Mater. 2022;32:2111228.

    Article  CAS  Google Scholar 

  61. Ji F, Sun Z, Hang T, Zheng J, Li X, Duan G, Zhang C, Chen Y. Flexible piezoresistive pressure sensors based on nanocellulose aerogels for human motion monitoring: a review. Compos Commun. 2022;35: 101351.

    Article  Google Scholar 

  62. Kang YJ, Arafa HM, Yoo JY, Kantarcigil C, Kim JT, Jeong H, Yoo S, Oh S, Kim J, Wu C, Tzavelis A, Wu Y, Kwon K, Winograd J, Xu S, Martin-Harris B, Rogers JA. Soft skin-interfaced mechano-acoustic sensors for real-time monitoring and patient feedback on respiratory and swallowing biomechanics. NPJ Digit Med. 2022;5:147.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Huang J, Li D, Zhao M, Ke H, Mensah A, Lv P, Tian X, Wei Q. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors. Chem Eng J. 2019;373:1357–66.

    Article  CAS  Google Scholar 

  64. Fu Y, Zhao S, Wang L, Zhu R. A Wearable sensor using structured silver-particle reinforced PDMS for radial arterial pulse wave monitoring. Adv Healthc Mater. 2019;8: e1900633.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the International Joint Research Center for Biomass Chemistry and Materials, Shaanxi International Science and Technology Cooperation Base (2018GHJD-19), Shaanxi Key Industry Innovation Chain Projects (2020ZDLGY11-03), the National Natural Science Foundation of China (22378247), and the Shaanxi Qin Chuangyuan Project of "Scientist + Engineer" team construction (2022KXJ-135): a team of “scientists + engineers” of fibre-based biofilter plates. The authors would like to thank Prof. Xincun Dou of the Xinjiang Key Laboratory of Trace Chemicals Sensing of Xinjiang Technical Institute of Physics and Chemistry, CAS, for helpful discussions on topics related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sufeng Zhang.

Ethics declarations

Conflict of interest

No potential conflicts of interest were reported by the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12267 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, S., Li, L. et al. High-Performance Cellulose Nanofibers/Carbon Nanotubes Composite for Constructing Multifunctional Sensors and Wearable Electronics. Adv. Fiber Mater. 6, 758–771 (2024). https://doi.org/10.1007/s42765-024-00388-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-024-00388-7

Keywords

Navigation