Skip to main content
Log in

Plastic-Swelling Preparation of Functional Graphene Aerogel Fiber Textiles

Advanced Fiber Materials Aims and scope Submit manuscript

Cite this article

Abstract

Graphene aerogel fibers (GAFs) combine the advantages of lightweight, high specific strength and conductivity of graphene, showing great potential in multifunctional wearable textiles. However, the fabrication and application of GAF textiles are considerably limited by the low structural robustness of GAF. Here, we report a plastic-swelling method to fabricate GAF textiles with high performance and multi-functionalities. GAF textiles were achieved by plastic-swelling, the prewoven graphene oxide fiber (GOF) tow textiles. This near-solid plastic-swelling process allows GAFs in textiles to maintain high structural order and controllable density, and exhibit record-high tensile strength up to 103 MPa and electrical conductivity up to 1.06 × 104 S m−1 at the density of 0.4 g cm−3. GAF textiles exhibit high strength of 113 MPa, multiple electrical and thermal functions, and high porosity to serve as host materials for more functional guests. The plastic-swelling provides a general strategy to fabricate diverse aerogel fiber textiles, paving the road for their realistic application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The data that support the findings of this stduy are available from the corresponding authors upon reasonable request.

References

  1. Shi QW, Sun JQ, Hou CY, Li YG, Zhang QH, Wang HZ. Advanced functional fiber and smart textile. Adv Fiber Mater. 2019;1:3–31.

    Article  Google Scholar 

  2. Wang HM, Zhang Y, Liang XP, Zhang YY. Smart fibers and textiles for personal health management. ACS Nano. 2021;15(8):12497–508.

    Article  CAS  Google Scholar 

  3. Zhu MM, Yu JY, Li ZL, Ding B. Self-healing fibrous membranes. Angew Chem Int Ed. 2022;61: e202208949.

    Article  CAS  Google Scholar 

  4. Shi X, Zuo Y, Zhai P, Shen JH, Yang YYW, Gao Z, Liao M, Wu JX, Wang JW, Xu XJ, Tong Q, Zhang B, Wang BJ, Sun XM, Zhang LH, Pei QB, Jin DY, Chen PN, Peng HS. Large-area display textiles integrated with functional systems. Nature. 2021;591:240–5.

    Article  CAS  Google Scholar 

  5. Chen GR, Li YZ, Bick M, Chen J. Smart textiles for electricity generation. Chem Rev. 2020;120(8):3668–720.

    Article  CAS  Google Scholar 

  6. Zhu MM, Li JL, Yu JY, Li ZL, Ding B. Superstable and intrinsically self-healing fibrous membrane with bionic confined protective structure for breathable electronic skin. Angew Chem Int Ed. 2022;61: e202200226.

    Article  CAS  Google Scholar 

  7. Cai JY, Du MJ, Li ZL. Flexible temperature sensors constructed with fiber materials. Adv Mater Technol. 2022;7:2101182.

    Article  Google Scholar 

  8. Lv XS, Liu Y, Yu JY, Li ZL, Ding B. Smart fibers for self-powered electronic skins. Adv Fiber Mater. 2023;5:401–28.

    Article  Google Scholar 

  9. Cai SY, Xu CS, Jiang DF, Yuan ML, Zhang QW, Li ZL, Wang Y. Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics. Nano Energy. 2022;93:2211–855.

    Article  Google Scholar 

  10. Li DH, Feng YM, Li FX, Tang JC, Hua T. Carbon fibers for bioelectrochemical: precursors, bioelectrochemical system, and biosensors. Adv Fiber Mater. 2023;5:699–730.

    Article  CAS  Google Scholar 

  11. Fang YS, Chen GR, Bick M. Smart textiles for personalized thermoregulation. Chem Soc Rev. 2021;50:9357–74.

    Article  CAS  Google Scholar 

  12. Libanori A, Chen GR, Zhao X, Zhou YH, Chen J. Smart textiles for personalized healthcare. Nat Electron. 2022;5:142–56.

    Article  CAS  Google Scholar 

  13. Xia YX, Gao WW, Gao C. A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv Funct Mater. 2022;32:2204591.

    Article  CAS  Google Scholar 

  14. Guan FY, Han ZL, Jin MT, Wu ZT, Chen Y, Chen SY, Wang HP. Durable and flexible bio-assembled RGO-BC/BC bilayer electrodes for pressure sensing. Adv Fiber Mater. 2021;3:128–37.

    Article  CAS  Google Scholar 

  15. Zhou J, Hsieh YL. Nanocellulose aerogel-based porous coaxial fibers for thermal insulation. Nano Energy. 2020;68:2211–855.

    Article  Google Scholar 

  16. Yang HW, Wang ZQ, Liu Z, Cheng H, Li CL. Continuous, strong, porous silk firoin-based aerogel fibers toward textile thermal insulation. Polymers. 2019;11(11):1899.

    Article  Google Scholar 

  17. Du Y, Zhang XH, Wang J, Liu ZW, Zhang K, Ji XF, You YZ, Zhang XT. Reaction-spun transparent silica aerogel fibers. ACS Nano. 2020;14(9):11919–28.

    Article  CAS  Google Scholar 

  18. Karadagli I, Schulz B, Schestakow M, Milow B, Gries T, Ratke L. Production of porous cellulose aerogel fibers by an extrusion process. J Supercrit Fluids. 2015;106:105–14.

    Article  CAS  Google Scholar 

  19. Mroszczok J, Schulz B, Wilsch K, Frenzer G, Kasper S, Seide G. Cellulose aerogel fibres for thermal encapsulation of diesel hybrid engines for fuel savings in cars. Mater Today. 2017;4:S244–8.

    Google Scholar 

  20. Liu ZW, Lyu J, Fang D, Zhang XT. Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments. ACS Nano. 2019;13(5):5703–11.

    Article  CAS  Google Scholar 

  21. Cui Y, Gong HX, Wang YJ, Li DW, Bai H. A thermally insulating textile inspired by polar bear hair. Adv Mater. 2018;30:1706807.

    Article  Google Scholar 

  22. Wang YJ, Cui Y, Shao ZY, Gao WW, Fan W, Liu TX, Bai H. Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments. Chem Eng J. 2020;390:1385–8947.

    Article  Google Scholar 

  23. Li X, Dong GQ, Liu ZW, Zhang XT. Polyimide aerogel fibers with superior flame resistance, strength, hydrophobicity, and flexibility made via a universal sol–gel confined transition strategy. ACS Nano. 2021;15:4759–68.

    Article  CAS  Google Scholar 

  24. Wang ZQ, Yang HW, Li Y, Zhang XT. Robust silk fibroin/graphene oxide aerogel fiber for radiative heating textiles. ACS Appl Mater Interfaces. 2020;12:15726–36.

    Article  CAS  Google Scholar 

  25. Wu XH, Hong G, Zhang XT. Electroless plating of graphene aerogel fibers for electrothermal and electromagnetic applications. Langmuir. 2019;35:3814–21.

    Article  CAS  Google Scholar 

  26. Xu Z, Zhang Y, Li PG, Gao C. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano. 2012;6(8):7103–13.

    Article  CAS  Google Scholar 

  27. Li GY, Guo H, Dong DP, Song WH, Zhang XT. Multiresponsive graphene-aerogel-directed phase-change smart fibers. Adv Mater. 2018;30:1801754.

    Article  Google Scholar 

  28. Li YZ, Zhang XT. Electrically conductive, optically responsive, and highly orientated Ti3C2Tx MXene aerogel fibers. Adv Funct Mater. 2022;32:2107767.

    Article  CAS  Google Scholar 

  29. Hou YL, Sheng ZZ, Fu C, Kong J, Zhang XT. Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat Commun. 2022;13:1227.

    Article  CAS  Google Scholar 

  30. Zhang YR, Gao Y, Zheng QH, Zhang TT, Qiu LP, Gao SL, Zhang XT, Han WP, Long YZ. Conductive, self-cleaning, and short-circuit proof multi-functional graphene aerogel composite fibers. J Mater Sci. 2022;33:19947–57.

    CAS  Google Scholar 

  31. Han ZP, Wang JQ, Liu SP, Zhang QH, Liu YJ, Tan YQ, Luo SY, Guo F, Ma JY, Li P, Ming X, Gao C, Xu Z. Electrospinning of neat graphene nanofibers. Adv Fiber Mater. 2022;4:268–79.

    Article  CAS  Google Scholar 

  32. Guan TX, Li ZM, Qiu DC, Wu G, Wu J, Zhu LP, Zhu MF, Bao NZ. Recent progress of graphene fiber/fabric supercapacitors: from building block architecture, fiber assembly, and fabric construction to wearable applications. Adv Fiber Mater. 2023;5:896–927.

    Article  CAS  Google Scholar 

  33. Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres. Nat Commun. 2011;2:571.

    Article  Google Scholar 

  34. Xin GQ, Zhu WG, Deng YX, Cheng J, Zhang L, Chung A, De S, Lian J. Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat Nanotechnol. 2019;14:168–75.

    Article  CAS  Google Scholar 

  35. Li P, Liu YJ, Shi SY, Xu Z, Ma WG, Wang ZQ, Liu SP, Gao C. Highly crystalline graphene fibers with superior strength and conductivities by plasticization spinning. Adv Funct Mater. 2020;30:2006584.

    Article  CAS  Google Scholar 

  36. Ming X, Wei AR, Liu YJ, Peng L, Li P, Wang JQ, Liu SP, Fang WZ, Wang ZQ, Peng HQ, Lin JH, Huang HG, Han ZP, Luo SY, Cao M, Wang B, Liu Z, Guo FL, Xu Z, Gao C. 2D-topology-seeded graphitization for highly thermally conductive carbon fibers. Adv Mater. 2022;34:2201867.

    Article  CAS  Google Scholar 

  37. Gao Y, Xie C, Zheng ZJ. Textile composite electrodes for flexible batteries and supercapacitors: opportunities and challenges. Adv Energy Mater. 2021;11:2002838.

    Article  CAS  Google Scholar 

  38. Mao LZ, Zhou MJ, Yao L, Yu H, Yan XF, Shen Y, Chen WS, Ma PB, Ma Y, Zhang SL, Tan SC. Crocodile skin-inspired protective composite textiles with pattern-controllable soft-rigid unified structures. Adv Funct Mater. 2023;33:2213419.

    Article  CAS  Google Scholar 

  39. Wang F, Fang WZ, Ming X, Liu YJ, Xu Z, Gao C. A review on graphene oxide: 2D colloidal molecule, fluid physics, and macroscopic materials. Appl Phys Rev. 2023;10: 011311.

    Article  CAS  Google Scholar 

  40. Carvalho A, Costa MCF, Marangoni VS, Ng PR, Nguyen TLH, Castro Neto AH. The degree of oxidation of graphene oxide. Nanomaterials. 2021;11(3):560.

    Article  CAS  Google Scholar 

  41. Fang WZ, Peng L, Liu YJ, Wang F, Xu Z, Gao C. A review on graphene oxide two-dimensional macromolecules: from single molecules to macro-assembly. Chin J Polym Sci. 2021;39:267–308.

    Article  CAS  Google Scholar 

  42. Chang D, Liu JR, Fang B, Xu Z, Li Z, Liu YJ, Brassart L, Guo F, Gao WW, Gao C. Reversible fusion and fission of graphene oxide–based fibers. Science. 2021;372:614–7.

    Article  CAS  Google Scholar 

  43. Xin GQ, Yao TK, Sun HT, Scott SM, Shao D, Wang GK, Lian J. Highly thermally conductive and mechanically strong graphene fibers. Science. 2015;349:1083.

    Article  CAS  Google Scholar 

  44. Kim JY, Cote LJ, Kim FL, Yuan W, Shull RK, Huang JX. Graphene oxide sheets at interfaces. J Am Chem Soc. 2010;132:8180–6.

    Article  CAS  Google Scholar 

  45. Paredes JI, Rodil V, Martinez-Alonso A, Tascon JMD. Graphene oxide dispersions in organic solvents. Langmuir. 2008;24:10560–4.

    Article  CAS  Google Scholar 

  46. Konios D, Stylianakis MM, Stratakis E, Kymakis. Dispersion behaviour of graphene oxide and reduced graphene oxide. J Coll Interface Sci. 2014;430:108–12.

    Article  CAS  Google Scholar 

  47. Dai J, Wang GJ, Ma L, Wu CK. Study on the surface energies and dispersibility of graphene oxide and its derivatives. J Mater Sci Technol. 2015;50:3895–907.

    CAS  Google Scholar 

  48. Wang G, Zhu MF. Reversible fusion and fission of graphene oxide-based fibers. Adv Fiber Mater. 2021;3:381–2.

    Article  CAS  Google Scholar 

  49. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. J Electron Spectrosc. 2014;195:145–54.

    Article  CAS  Google Scholar 

  50. Wu JY, Lin H, Moss DJ, Loh KP, Jia BH. Graphene oxide for photonics, electronics and optoelectronics. Nat Rev Chem. 2023;7:162–83.

    Article  Google Scholar 

  51. Gutiérrez-Cruz A, Ruiz-Hernández AR, Vega-Clemente JF, Luna-Gazcon DG, Campos-Delgado J. A review of top-down and bottom-up synthesis methods for the production of graphene, graphene oxide and reduced graphene oxide. J Mater Sci. 2022;57:14543–78.

    Article  Google Scholar 

  52. Al-Gaashani R, Najjar A, Zakaria Y, Mansour S, Atieh MA. XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceram Int. 2019;45:14439.

    Article  CAS  Google Scholar 

  53. Heller EJ, Yang Y, Kocia L, Chen W, Fang SA, Borunda M, Kaxiras E. Theory of graphene Raman scattering. ACS Nano. 2016;10(2):2803–18.

    Article  CAS  Google Scholar 

  54. Kotakoski J, Krasheninnikov AV, Kaiser U, Meyer JC. From point defects in graphene to two-dimensional amorphous carbon. Phys Rev Lett. 2011;106: 105505.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff at the Shanghai Synchrotron Radiation Facility (SSRF) for assistance in SAXS characterizations. This work is supported by the National Natural Science Foundation of China (Nos. 52090030, 52122301, 51973191, 52272046 and 51533008), the Natural Science Foundation of Zhejiang Province (LR23E020003), the Fundamental Research Funds for the Central Universities (No. K20200060, 2017QNA4036, 2017XZZX001-04, 226-2023-00023, 2021FZZX001-17), Hundred Talents Program of Zhejiang University (188020*194231701/113), Postdoctoral Research Program of Zhejiang province (ZJ2022079), Shanxi-Zheda Institute of New Materials and Chemical Engineering (Nos. 2022SZ-TD012, 2022SZ-TD011 and 2021SZ-FR004) and the International Research Center for X polymers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Li, Yingjun Liu, Chao Gao or Zhen Xu.

Ethics declarations

Conflict of interest

There is no conflict of interest in the article. Chao Gao is an editorial board member for Advanced Fiber Materials and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1073 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Xia, Y., Li, P. et al. Plastic-Swelling Preparation of Functional Graphene Aerogel Fiber Textiles. Adv. Fiber Mater. 5, 2016–2027 (2023). https://doi.org/10.1007/s42765-023-00316-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00316-1

Keywords

Navigation