Skip to main content

Rosuvastatin-Eluting Gold-Nanoparticle-Loaded Perivascular Wrap for Enhanced Arteriovenous Fistula Maturation in a Murine Model

Abstract

Arteriovenous fistulas (AVFs) are a vital form of AV access for patients requiring hemodialysis, but they link to overall morbidity and mortality when they fail to mature. The most common cause of AVF non-maturation is neointimal hyperplasia (NIH). To minimize the deleterious effects of NIH, a perivascular wrap composed of polycaprolactone (PCL), rosuvastatin (ROSU), and gold nanoparticles (AUNPs) was constructed. This study assessed the impact of ROSU-eluting, radiopaque resorbable perivascular wraps on pathologic NIH in a chronic kidney disease (CKD) rodent model of AVF. Electrospun PCL wraps containing AuNPs and/or ROSU were monitored for in vitro tensile strength, AuNP release, ROSU elution, and effect on cellular viability. The wraps were then implanted around an AVF in a CKD rodent model for in vivo ultrasound (US) and micro-computed tomography (mCT) imaging. AVF specimens were collected for histological analyses. Cell viability was preserved in the presence of both AuNP- and ROSU-containing wraps. In vitro release of ROSU and AuNPs correlated with in vivo findings of decreasing radiopacity on mCT over time. AuNP-loaded wraps had higher radiopacity (1270.0–1412.0 HU at week 2) compared with other wraps (103.5–456.0 HU), which decreased over time. The addition of ROSU decreased US and histologic measurements of NIH. The reduced NIH seen with ROSU-loaded perivascular wraps suggests a synergistic effect between mechanical support and anti-hyperplasia medication. Furthermore, AuNP loading increased wrap radiopacity. Together, our results show that AuNP- and ROSU-loaded PCL wraps induce AVF maturation and suppress NIH while facilitating optimal implanted device visualization.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The datasets used and/or analyzed in this study are available from the corresponding author upon reasonable request.

References

  1. United States Renal Data System. 2022 USRDS Annual Data Report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda. 2022.

  2. Pirozzi N, Mancianti N, Scrivano J, Fazzari L, Pirozzi R, Tozzi M. Monitoring the patient following radio-cephalic arteriovenous fistula creation: current perspectives. Vasc Health Risk Manag. 2021;17:111.

    Article  Google Scholar 

  3. Huber TS, Berceli SA, Scali ST, Neal D, Anderson EM, Allon M, Cheung AK, Dember LM, Himmelfarb J, Roy-Chaudhury P, Vazquez MA, Alpers CE, Robbin ML, Imrey PB, Beck GJ, Farber AM, Kaufman JS, Kraiss LW, Vongpatanasin W, Kusek JW, Feldman HI. Arteriovenous fistula maturation, functional patency, and intervention rates. JAMA Surg. 2021;156:1111.

    Article  Google Scholar 

  4. San Valentin EMD, Barcena AJR, Klusman C, Martin B, Melancon MP. Nano-embedded medical devices and delivery systems in interventional radiology. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15: e1841.

    Article  CAS  Google Scholar 

  5. Goldstein A, Soroka Y, Frušić-Zlotkin M, Popov I, Kohen R. High resolution SEM imaging of gold nanoparticles in cells and tissues. J Microsc. 2014;256:237.

    Article  CAS  Google Scholar 

  6. Barcena AJR, Perez JVD, Damasco JA, Bernardino M, San Valentin EMD, Klusman C, Martin B, Cortes A, Canlas G, Del Mundo H, Heralde FM, Avritscher R, Fowlkes N, Bouchard RR, Cheng J, Huang SY, Melancon MP. Gold nanoparticles for monitoring of mesenchymal stem cell–loaded bioresorbable polymeric wraps for arteriovenous fistulas. Int J Mol Sci. In press.

  7. Nie C, Stadtmüller M, Parshad B, Wallert M, Ahmadi V, Kerkhoff Y, Bhatia S, Block S, Cheng C, Wolff T, Haag R. Heteromultivalent topology-matched nanostructures as potent and broad-spectrum influenza A virus inhibitors. Sci Adv. 2021;7.

  8. Guo J, Xing Z, Liu L, Sun Y, Zhou H, Bai M, Liu X, Adeli M, Cheng C, Han X. Antioxidase-like nanobiocatalysts with ultrafast and reversible redox-centers to secure stem cells and periodontal tissues. Adv Func Mater. 2023;33:2211778.

    Article  CAS  Google Scholar 

  9. Wang Q, Liang Z, Li F, Lee J, Low LE, Ling D. Dynamically switchable magnetic resonance imaging contrast agents. Exploration. 2021;1:20210009.

    Article  Google Scholar 

  10. Barcena AJR, Perez JVD, Bernardino M, Damasco JA, Cortes A, Del Mundo H, San Valentin EMD, Klusman C, Canlas G, Heralde FM, Avritscher R, Fowlkes N, Bouchard RR, Cheng J, Huang SY, Melancon MP. Bioresorbable mesenchymal stem cell–loaded electrospun polymeric scaffold inhibits neointimal hyperplasia following arteriovenous fistula formation in a rat model of chronic kidney disease. Adv Healthc Mater. In press.

  11. Damasco JA, Huang SY, Perez JVD, Manongdo JAT, Dixon KA, Williams ML, Jacobsen MC, Barbosa R, Canlas GM, Chintalapani G, Melancon AD, Layman RR, Fowlkes NW, Whitley EM, Melancon MP. Bismuth nanoparticle and polyhydroxybutyrate coatings enhance the radiopacity of absorbable inferior vena cava filters for fluoroscopy-guided placement and longitudinal computed tomography monitoring in pigs. ACS Biomater Sci Eng. 2022;8:1676.

    Article  CAS  Google Scholar 

  12. Huang SY, Damasco JA, Tian L, Lu L, Perez JVD, Dixon KA, Williams ML, Jacobsen MC, Dria SJ, Eggers MD, Melancon AD, Layman RR, Whitley EM, Melancon MP. In vivo performance of gold nanoparticle-loaded absorbable inferior vena cava filters in a swine model. Biomater Sci. 2020;8:3966.

    Article  CAS  Google Scholar 

  13. Tian L, Lee P, Singhana B, Chen A, Qiao Y, Lu L, Martinez J, Tasciotti E, Jacobsen MC, Melancon A, McArthur M, Eggers M, Huang S, Melancon MP. In vivo imaging of radiopaque resorbable inferior vena cava filter infused with gold nanoparticles. Proc SPIE Int Soc Opt Eng. 2018;10576, 105762S.

  14. Tian L, Lee P, Singhana B, Chen A, Qiao Y, Lu L, Martinez JO, Tasciotti E, Melancon A, Huang S, Eggers M, Melancon MP. Radiopaque resorbable inferior vena cava filter infused with gold nanoparticles. Sci Rep. 2017;7:2147.

    Article  Google Scholar 

  15. Cheung AK, Imrey PB, Alpers CE, Robbin ML, Radeva M, Larive B, Shiu Y-T, Allon M, Dember LM, Greene T, Himmelfarb J, Roy-Chaudhury P, Terry CM, Vazquez MA, Kusek JW, Feldman HI. Intimal hyperplasia, stenosis, and arteriovenous fistula maturation failure in the hemodialysis fistula maturation study. J Am Soc Nephrol. 2017;28:3005.

    Article  Google Scholar 

  16. Ma S, Duan S, Liu Y, Wang H. Intimal hyperplasia of arteriovenous fistula. Ann Vasc Surg. 2022;85:444.

    Article  Google Scholar 

  17. Yamazaki T, Shirai H, Yashima J, Tojimbara T. High low-density lipoprotein cholesterol level is the independent risk factor of primary patency rate of arteriovenous fistula. Vascular. 2020;28:430.

    Article  CAS  Google Scholar 

  18. Chang H-H, Chang Y-K, Lu C-W, Huang C-T, Chien C-T, Hung K-Y, Huang K-C, Hsu C-C. Statins improve long term patency of arteriovenous fistula for hemodialysis. Sci Rep. 2016;6:22197.

    Article  CAS  Google Scholar 

  19. Wan Q, Li L, Yang S, Chu F. Impact of statins on arteriovenous fistulas outcomes: a meta-analysis. Ther Apher Dial. 2018;22:67.

    Article  CAS  Google Scholar 

  20. Martinez L, Duque JC, Escobar LA, Tabbara M, Asif A, Fayad F, Vazquez-Padron RI, Salman LH. Distinct impact of three different statins on arteriovenous fistula outcomes: a retrospective analysis. J Vasc Access. 2016;17:471.

    Article  Google Scholar 

  21. Barcena AJR, Perez JVD, Liu O, Mu A, Heralde FM, Huang SY, Melancon MP. Localized perivascular therapeutic approaches to inhibit venous neointimal hyperplasia in arteriovenous fistula access for hemodialysis use. Biomolecules. 2022;12:1367.

    Article  CAS  Google Scholar 

  22. Li L, Lyu J, Cheng Q, Fu C, Zhang X. Versatile recyclable kevlar nanofibrous aerogels enabled by destabilizing dynamic balance strategy. Adv Fiber Mater. 2023;5:1050.

    Article  CAS  Google Scholar 

  23. Deng Y, Lu T, Zhang X, Zeng Z, Tao R, Qu Q, Zhang Y, Zhu M, Xiong R, Huang C. Multi-hierarchical nanofiber membrane with typical curved-ribbon structure fabricated by green electrospinning for efficient, breathable and sustainable air filtration. J Membr Sci. 2022;660: 120857.

    Article  CAS  Google Scholar 

  24. Chen Y, Dong X, Shafiq M, Myles G, Radacsi N, Mo X. Recent advancements on three-dimensional electrospun nanofiber scaffolds for tissue engineering. Adv Fiber Mater. 2022;4:959.

    Article  CAS  Google Scholar 

  25. Watson AS, Beevy SS. Physico-mechanical characteristics of bast fibres of Sesamum indicum and Sesamum radiatum for bioprospecting. J Bioresour Bioprod. 2022;7:306.

    Article  CAS  Google Scholar 

  26. Zhang Y, Chen L, Huang J, Yang A, Wang J, Xie M, Liu Y, Liu Z, Xiao H, Min H, Hu C, Xiong R, Huang C. Biomass-based indole derived composited with cotton cellulose fiber integrated as sensitive fluorescence platform for NH3 detection and monitoring of seafood spoilage. Int J Biol Macromol. 2022;221:994.

    Article  CAS  Google Scholar 

  27. Al-Saeghi SS, Hossain MA, Al-Touby SSJ. Characterization of antioxidant and antibacterial compounds from aerial parts of Haplophyllum tuberculatum. J Bioresour Bioprod. 2022;7:52.

    Article  CAS  Google Scholar 

  28. Zhu X, Cui W, Li X, Jin Y. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromol. 2008;9:1795.

    Article  CAS  Google Scholar 

  29. Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliari F, Franzese O, Minieri M, Di Nardo P, Licoccia S, Traversa E. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomater. 2010;6:1227.

    Article  CAS  Google Scholar 

  30. Zhang Y, Zhao Y, Wu Y, Zhou A, Qu Q, Zhang X, Song B, Liu K, Xiong R, Huang C. Well-defined organic fluorescent nanomaterials with AIE characteristics for colorimetric/UV-vis/fluorescent multi-channel recognition of Zn2+ with multiple applications in plant cells and zebrafish. Mater Chem Front. 2021;5:4981.

    Article  CAS  Google Scholar 

  31. Zhang Y, Zhao Y, Song B, Liu K, Gu J, Yue Y, Xiong R, Huang C. UV-fluorescence probe for detection Ni2+ with colorimetric/spectral dual-mode analysis method and its practical application. Bioorg Chem. 2021;114: 105103.

    Article  CAS  Google Scholar 

  32. Wang X, Chaudhry MA, Nie Y, Xie Z, Shapiro JI, Liu J. A mouse 5/6th nephrectomy model that induces experimental uremic cardiomyopathy. J Vis Exp. 2017.

  33. Wong CY, de Vries MR, Wang Y, van der Vorst JR, Vahrmeijer AL, van Zonneveld A-J, Hamming JF, Roy-Chaudhury P, Rabelink TJ, Quax PHA, Rotmans JI. A novel murine model of arteriovenous fistula failure: the surgical procedure in detail. J Vis Exp. 2016, e53294.

  34. Wan X, Zhao Y, Li Z, Li L. Emerging polymeric electrospun fibers: from structural diversity to application in flexible bioelectronics and tissue engineering. Exploration. 2022;2:20210029.

    Article  Google Scholar 

  35. Klose D, Siepmann F, Elkharraz K, Krenzlin S, Siepmann J. How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int J Pharm. 2006;314:198.

    Article  CAS  Google Scholar 

  36. Siepmann J, Faisant N, Akiki J, Richard J, Benoit JP. Effect of the size of biodegradable microparticles on drug release: experiment and theory. J Control Release. 2004;96:123.

    Article  CAS  Google Scholar 

  37. Baker BM, Mauck RL. The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials. 1967;2007:28.

    Google Scholar 

  38. Mesbahi A, Famouri F, Ahar MJ, Ghaffari MO, Ghavami SM. A study on the imaging characteristics of Gold nanoparticles as a contrast agent in X-ray computed tomography. Polish J Med Phys Eng. 2017;23:9.

    Article  Google Scholar 

  39. Silvestri A, Zambelli V, Ferretti AM, Salerno D, Bellani G, Polito L. Design of functionalized gold nanoparticle probes for computed tomography imaging. Contrast Media Mol Imaging. 2016;11:405.

    Article  CAS  Google Scholar 

  40. Lev MH, Gonzalez RG. 17—CT angiography and CT perfusion imaging. In: Toga AW, Mazziotta JC, editors. Brain mapping: the methods. 2nd ed. San Diego: Academic Press; 2002. p. 427.

    Chapter  Google Scholar 

  41. Koushki K, Shahbaz SK, Mashayekhi K, Sadeghi M, Zayeri ZD, Taba MY, Banach M, Al-Rasadi K, Johnston TP, Sahebkar A. Anti-inflammatory action of statins in cardiovascular disease: the role of inflammasome and toll-like receptor pathways. Clin Rev Allergy Immunol. 2021;60:175.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Institutes of Health—National Heart, Lung, and Blood Institute (5HL141831-05 and 1R01HL159960-01A1), a Radiological Society of North America Research Seed Grant (RSD2012), a Society of Interventional Radiology Pilot Research Grant, an MD Anderson Center for Advanced Biomedical Imaging Pilot Project Program Research Grant, and the National Institutes of Health—National Cancer Institute through MD Anderson's Cancer Center Support Grant (P30CA016672; used the Research Animal Support Facility and Small Animal Imaging Facility). The authors would like to acknowledge Sunita C. Patterson in MD Anderson’s Research Medical Library for editing the manuscript, Dr. James Gu at the Electron Microscopy Core at Houston Methodist Research Institute for assisting with the conduct of scanning electron microscopy, and Dunn Lab personnel (i.e., Amanda McWatters, Malea L. Williams, and Steve D. Parrish) for assisting with animal experiments, and Small Animal Imaging Facility personnel for assisting with animal imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marites P. Melancon.

Ethics declarations

Conflict of Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 218 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klusman, C., Martin, B., Perez, J.V.D. et al. Rosuvastatin-Eluting Gold-Nanoparticle-Loaded Perivascular Wrap for Enhanced Arteriovenous Fistula Maturation in a Murine Model. Adv. Fiber Mater. 5, 1986–2001 (2023). https://doi.org/10.1007/s42765-023-00315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00315-2

Keywords