Skip to main content

Bifunctional Activated Carbon Ultrathin Fibers: Combining the Removal of VOCs and PM in One Material

Abstract

Volatile organic compounds (VOCs) and particulate matter (PM) are both frequently present in air as contaminants, posing serious health and environmental hazards. The current filtration of VOCs utilizes entirely different materials compared with PM filtration, adding complexity to air cleaning system. Herein, we design a pitch-based activated carbon ultrathin fibers (PACUFs) for bifunctional air purification. The PACUFs, with fiber diameter of ∼1.2 µm and specific surface area of 2341 m2 g−1, provide both high VOCs adsorption capacity (∼706 mg g−1) and excellent efficiency of ∼97% PM0.3 filtration with low pressure drop. In contrast, traditional activated carbon fibers exhibit VOCs adsorption capacity of ∼448 mg g−1 and PM0.3 removal efficiency of only ∼36% at an equal area density of ∼190 g m−2. Theoretical investigations reveal the filtration mechanism of the high-performance bifunctional fibrous PACUFs, considering full advantages of the high surface area, small pore size, and significant micropore volume.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The data that support the findings of this study are available from the authors upon reasonable request.

References

  1. Li XQ, Zhang L, Yang ZQ, Wang P, Yan YF, Ran JY. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review. Sep Purif Technol. 2020;235: 116213.

    Article  CAS  Google Scholar 

  2. Hill J, Goodkind A, Tessum C, Thakrar S, Tilman D, Polasky S, Smith T, Hunt N, Mullins K, Clark M, Marshall J. Air-quality-related health damages of maize. Nat Sustain. 2019;2:397–403.

    Article  Google Scholar 

  3. Li K, Jacob DJ, Liao H, Zhu J, Shah V, Shen L, Bates KH, Zhang Q, Zhai SA. two-pollutant strategy for improving ozone and particulate air quality in China. Nat Geosci. 2019;12:906–10.

    Article  CAS  Google Scholar 

  4. He F, Weon S, Jeon W, Chung MW, Choi W. Self-wetting triphase photocatalysis for effective and selective removal of hydrophilic volatile organic compounds in air. Nat Commun. 2021;12:6259.

    Article  CAS  Google Scholar 

  5. Zhang Y, Han Y, Ji X, Zang D, Qiao L, Sheng Z, Wang C, Wang S, Wang M, Hou Y. Continuous air purification by aqueous interface filtration and absorption. Nature. 2022;610:74–80.

    Article  CAS  Google Scholar 

  6. Liu G, Xiao M, Zhang X, Gal C, Chen X, Liu L, Pan S, Wu J, Tang L, Clements-Croome D. A review of air filtration technologies for sustainable and healthy building ventilation. Sustain Cities Soc. 2017;32:375–96.

    Article  Google Scholar 

  7. Gulia S, Tiwari R, Mendiratta S, Kaur S, Goyal SK, Kumar R. Review of scientific technology-based solutions for vehicular pollution control. Clean Technol Environ Policy. 2020;22:1955–66.

    Article  Google Scholar 

  8. Ketkaew S. Innovation for trap particle and eliminate germs in air by corona electrostatic system. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 877: 012054.

  9. Wardoyo AYP, Dharmawan HA, Nurhuda M, Budianto AA. High voltage electrostatic filter for particulate matter PM25 capture applied in motor vehicle exhaust system. J. Phys., Conf. Ser. (UK) 2020, 1528: 012001.

  10. Zhang Z, Ji D, He H, Ramakrishna S. Electrospun ultrafine fibers for advanced face masks. Mater Sci Eng R Rep. 2021;143: 100594.

    Article  Google Scholar 

  11. Campos RK, Jin J, Rafael GH, Zhao M, Liao L, Simmons G, Chu S, Weaver SC, Chiu W, Cui Y. Decontamination of SARS-CoV-2 and other RNA viruses from N95 level meltblown polypropylene fabric using heat under different humidities. ACS Nano. 2022;14:14017–25.

    Article  Google Scholar 

  12. Zhang GH, Zhu QH, Zhang L, Yong F, Zhang Z, Wang SL, Wang Y, He L, Tao GH. High-performance particulate matter including nanoscale particle removal by a self-powered air filter. Nat Commun. 2020;11:1653.

    Article  CAS  Google Scholar 

  13. Li L, Liu S, Liu J. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal. J Hazard Mater. 2011;192:683–90.

    Article  CAS  Google Scholar 

  14. Xie ZZ, Wang L, Cheng G, Shi L, Zhang YB. Adsorption properties of regenerative materials for removal of low concentration of toluene. J Air Waste Manag Assoc. 2016;66:1224–36.

    Article  CAS  Google Scholar 

  15. Zhang XY, Gao B, Creamer AE, Cao CC, Li YC. Adsorption of VOCs onto engineered carbon materials: a review. J Hazard Mater. 2017;338:102–23.

    Article  CAS  Google Scholar 

  16. Yue ZR, Vakili A, Wang J. Activated carbon fibers from meltblown isotropic pitch fiber webs for vapor phase adsorption of volatile organic compounds. Chem Eng J. 2017;330:183–90.

    Article  CAS  Google Scholar 

  17. Yi FY, Lin XD, Chen SX, Wei XQ. Adsorption of VOC on modified activated carbon fiber. J Porous Mat. 2009;16:521–6.

    Article  CAS  Google Scholar 

  18. Pui WK, Yusoff R, Aroua MK. A review on activated carbon adsorption for volatile organic compounds (VOCs). Rev Chem Eng. 2019;35:649–68.

    Article  CAS  Google Scholar 

  19. Zhu CY, Xue CY, Huang MQ, Zhu FX, Fang GD, Wang DX, Liu SC, Chen N, Wu S, Zhou DM. Rapid As(III) oxidation mediated by activated carbons: reactive species vs. direct oxidation. Sci Total Environ. 2022;822:153536.

    Article  CAS  Google Scholar 

  20. Zhai S, Jacob DJ, Wang X, Liu Z, Wen T, Shah V, Li K, Moch JM, Bates KH, Song S. Control of particulate nitrate air pollution in China. Nat Geosci. 2021;14:389–95.

    Article  CAS  Google Scholar 

  21. Nansai K, Tohno S, Chatani S, Kanemoto K, Kagawa S, Kondo Y, Takayanagi W, Lenzen M. Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually. Nat Commun. 2021;12:6286.

    Article  CAS  Google Scholar 

  22. Tessum CW, Paolella DA, Chambliss SE, Apte JS, Hill JD, Marshall JD. PM2.5 polluters disproportionately and systemically affect people of color in the United States. Sci Adv. 2021;7:2375–548.

    Article  Google Scholar 

  23. Khalid B, Bai X, Wei H, Huang Y, Wu H, Cui Y. Direct blow-spinning of nanofibers on a window screen for highly efficient PM2.5 removal. Nano Lett. 2017;17:1140–8.

    Article  CAS  Google Scholar 

  24. Chow JC, Watson JG, Mauderly JL, Costa DL, Wyzga RE, Vedal S, Hidy GM, Altshuler SL, Marrack D, Heuss JM. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56:1368–80.

    Article  CAS  Google Scholar 

  25. Zhang R, Liu B, Yang A, Zhu Y, Liu C, Zhou G, Sun J, Hsu PC, Zhao W, Lin D. In Situ Investigation on the nanoscale capture and evolution of aerosols on nanofibers. Nano Lett. 2018;18:1130–8.

    Article  CAS  Google Scholar 

  26. Zhang S, Liu H, Tang N, Zhou S, Yu J, Ding B. Spider-web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks. Adv Mater. 2020;32:e2002361.

    Article  Google Scholar 

  27. Barakat T, Muylkens B, Su BL. Is particulate matter of air pollution a vector of Covid-19 pandemic? Matter. 2020;3:977–80.

    Article  Google Scholar 

  28. Kadam V, Kyratzis IL, Truong YB, Schutz J, Wang L, Padhye R. Electrospun bilayer nanomembrane with hierarchical placement of bead-on-string and fibers for low resistance respiratory air filtration. Sep Purif Technol. 2019;224:247–54.

    Article  CAS  Google Scholar 

  29. Lee HR, Liao L, Xiao W, Vailionis A, Ricco AJ, White R, Nishi Y, Chiu W, Chu S, Cui Y. Three-dimensional analysis of particle distribution on filter layers inside N95 respirators by deep learning. Nano Lett. 2021;21:651–7.

    Article  CAS  Google Scholar 

  30. Hu MR, Wang YF, Yan ZF, Zhao GD, Zhao YX, Xia L, Cheng BW, Di YB, Zhuang XP. Hierarchical dual-nanonet of polymer nanofibers and supramolecular nanofibrils for air filtration with a high filtration efficiency, low air resistance and high moisture permeation. J Mater Chem A. 2021;9:14093–100.

    Article  CAS  Google Scholar 

  31. Chen J, Ren YX, Liu WY, Wang T, Chen FE, Ling Z, Yong Q. All-natural and biocompatible cellulose nanocrystals films with tunable supramolecular structure. Int J Biol Macromol. 2021;193:1324–31.

    Article  CAS  Google Scholar 

  32. Chen WY, Jiang X, Lai SN, Peroulis D, Stanciu L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat Commun. 2020;11:1302.

    Article  CAS  Google Scholar 

  33. Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca RA, Silva LO, Mori WB, Joshi C. Collisionless shocks in laser-produced plasma generate monoenergetic high-energy proton beams. Nat Phy. 2012;8:95–9.

    Article  CAS  Google Scholar 

  34. Zhang ZH, Yang WM, Cheng LS, Cao WY, Sain MN, Tan J, Wang A, Jia HB. Carbon fibers with high electrical conductivity: Laser irradiation of mesophase pitch filaments obtains high graphitization degree. ACS Sustain Chem Eng. 2020;8:17629–38.

    Article  CAS  Google Scholar 

  35. Liu JC, Chen XJ, Liang DC, Xie Q. Development of pitch-based carbon fibers: a review. Energ Source Part A. 2020;1806952:1–21.

    Google Scholar 

  36. Carrott PJM, Suhas, Carrott MMLR, Guerrero CI, Delgado LA. Reactivity and porosity development during pyrolysis and physical activation in CO2 or steam of kraft and hydrolytic lignins. J Anal Appl Pyrolysis. 2008;82:264–71.

    Article  CAS  Google Scholar 

  37. Li DN, Ma Xj. Preparation and characterization of activated carbon fibers from liquefied wood. Cellulose. 2013;20:1649–56.

    Article  CAS  Google Scholar 

  38. Ryu ZY, Rong HQ, Zheng JT, Wang MZ, Zhang BJ. Microstructure and chemical analysis of PAN-based activated carbon fibers prepared by different activation methods. Carbon. 2002;40:1144–7.

    Article  CAS  Google Scholar 

  39. Huang Y, Ma E, Zhao G. Thermal and structure analysis on reaction mechanisms during the preparation of activated carbon fibers by KOH activation from liquefied wood-based fibers. Ind Crops Prod. 2015;69:447–55.

    Article  CAS  Google Scholar 

  40. Ferrari AC, Basko DM. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat Nanotech. 2013;8:235–46.

    Article  CAS  Google Scholar 

  41. Zhou ZP, Liu TY, Khan AU, Liu GL. Block copolymer-based porous carbon fibers. Sci Adv. 2019;5:eabf4491.

    Article  Google Scholar 

  42. Varga M, Izak T, Vretenar V, Kozak H, Holovsky J, Artemenko A, Hulman M, Skakalova V, Lee DS, Kromka A. Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies. Carbon. 2017;11:54–61.

    Article  Google Scholar 

  43. Liu YX, Mallouk K, Emamipour H, Rood MJ, Liu XM, Yan ZF. Isobutane adsorption with carrier gas recirculation at different relative humidities using activated carbon fiber cloth and electrothermal regeneration. Chem Eng J. 2019;360:1011–9.

    Article  CAS  Google Scholar 

  44. Wei HR, Deng SB, Hu BY, Chen ZH, Wang B, Huang J, Yu G. Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores. Chemsuschem. 2012;5:2354–60.

    Article  CAS  Google Scholar 

  45. Zhu J, Zhang P, Wang Y, Wen K, Su X, Zhu R, He H, Xi Y. Effect of acid activation of palygorskite on their toluene adsorption behaviors. Appl Clay Sci. 2018;159:60–7.

    Article  CAS  Google Scholar 

  46. Chu F, Zheng Y, Wen B, Zhou L, Yan J, Chen Y. Adsorption of toluene with water on zeolitic imidazolate framework-8/graphene oxide hybrid nanocomposites in a humid atmosphere. RSC Adv. 2018;8:2426–32.

    Article  CAS  Google Scholar 

  47. Yang X, Yi H, Tang X, Zhao S, Yang Z, Ma Y, Feng T, Cui X. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure. J Environ Sci. 2018;67:104–14.

    Article  CAS  Google Scholar 

  48. Nien KC, Chang FT, Chang MB. Adsorption of mesitylene via mesoporous adsorbents. J Air Waste Manag. 2017;67:1319–27.

    Article  CAS  Google Scholar 

  49. Vellingiri K, Kumar P, Deep A, Kim KH. Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure. Chem Eng J. 2017;307:1116–26.

    Article  CAS  Google Scholar 

  50. Yu X, Liu S, Lin G, Zhu X, Zhang S, Qu R, Zheng C, Gao X. Insight into the significant roles of microstructures and functional groups on carbonaceous surfaces for acetone adsorption. Rsc Adv. 2018;8:21541–50.

    Article  CAS  Google Scholar 

  51. Hu L, Peng Y, Wu F, Peng S, Li J, Liu Z. Tubular activated carbons made from cotton stalk for dynamic adsorption of airborne toluene. J Taiwan Inst Chem E. 2017;80:399–405.

    Article  CAS  Google Scholar 

  52. Sui H, Liu H, An P, He L, Li X, Cong S. Application of silica gel in removing high concentrations toluene vapor by adsorption and desorption process. J Taiwan Inst Chem E. 2017;74:218–24.

    Article  CAS  Google Scholar 

  53. Kim KD, Park EJ, Seo HO, Jeong MG, Kim YD, Lim DC. Effect of thin hydrophobic films for toluene adsorption and desorption behavior on activated carbon fiber under dry and humid conditions. Chem Eng J. 2012;200:133–9.

    Article  Google Scholar 

  54. Liu C, Hsu PC, Lee HW, Ye M, Zheng G, Liu N, Li W, Cui Y. Transparent air filter for high-efficiency PM2.5 capture. Nat Commun. 2015;6:6205–7.

    Article  CAS  Google Scholar 

  55. Liu H, Zhang S, Liu L, Yu J, Ding B. A fluffy dual-network structured nanofiber/net filter enables high-efficiency air filtration. Adv Funct Mater. 2019;29:1904108.

    Article  Google Scholar 

  56. Li P, Wang C, Zhang Y, Wei F. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes. Small. 2014;10:4543–61.

    Article  CAS  Google Scholar 

  57. Ma ZY, Guan BW, Liu XH, Zhang T. Performance analysis and improvement of air filtration and ventilation process in semiconductor clean air-conditioning system. Energ Build. 2020;228:1104489.

    Article  Google Scholar 

  58. Jia C, Liu YB, Li L, Song JN, Wang HY, Liu ZL, Li ZW, Li B, Fang MH, Wu H. A foldable all-ceramic air filter paper with high efficiency and high-temperature resistance. Nano Lett. 2020;20:4993–5000.

    Article  CAS  Google Scholar 

  59. Zhang S, Liu H, Zuo F, Yin X, Yu J, Ding B. A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter. Small. 2017;13:1603151.

    Article  Google Scholar 

  60. Hosseini SA, Tafreshi HV. 3-D simulation of particle filtration in electrospun nanofibrous filters. Powder Technol. 2010;201:153–60.

    Article  CAS  Google Scholar 

  61. Gervais PC, Bourrous S, Dany F, Bouilloux L, Ricciardi L. Simulations of filter media performances from microtomography-based computational domain. Exp Anal Comp Comp Fluids. 2015;116:118–28.

    Article  Google Scholar 

  62. Zhao X, Wang S, Yin X, Yu J, Ding B. Slip-Effect functional air filter for efficient purification of PM25. Sci Rep. 2016;6:35472.

    Article  CAS  Google Scholar 

  63. Park BH, Kim SB, Jo YM, Lee MH. Filtration characteristics of fine particulate matters in a PTFE/glass composite bag filter. Aerosol Air Qual Res. 2012;12:1030–6.

    Article  Google Scholar 

Download references

Acknowledgements

H.W., L.H.Z., and B.L supervised the project. H.W., B.L, and H.Y.W. conceived the idea. H.Y.W., P.D., Z.W.L., Z.K.C., C.Y., Y.Q.Z., and L.L. contributed to the material preparation and characterization. L.H.Z., X.Y.J., Z.W.C., and H.Y.W. contributed to the simulation and theoretical analysis. H.Y.W., D.Z, P.D., Z.W.L., Z.K.C., K.Y.W., B.H.L., B.P.Z., and L.L. conducted SEM, XRD and Raman characterizations. Y.X., Z.H.H., H.W., B.L., D.Z., X.Y.J., Z.W.C., and H.Y.W. contributed to writing the manuscript. All authors discussed the results and commented on the manuscript. This work was supported by the Basic Science Center Program of the National Natural Science Foundation of China (NSFC) under Grant No. 51788104, and Beijing Natural Science Foundation under Grant No. JQ19005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihao Zhao, Bo Li or Hui Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 9299 KB)

Supplementary file2 (MP4 6768 KB)

Supplementary file3 (DOCX 6622 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zu, D., Jiang, X. et al. Bifunctional Activated Carbon Ultrathin Fibers: Combining the Removal of VOCs and PM in One Material. Adv. Fiber Mater. 5, 1934–1948 (2023). https://doi.org/10.1007/s42765-023-00309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-023-00309-0

Keywords