Skip to main content

Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering

Abstract

Electrospinning is widely accepted as a technique for the fabrication of nanofibrous three-dimensional (3D) scaffolds which mimic extracellular matrix (ECM) microenvironment for tissue engineering (TE). Unlike normal densely-packed two-dimensional (2D) nanofibrous membranes, 3D electrospun nanofiber scaffolds are dedicated to more precise spatial control, endowing the scaffolds with a sufficient porosity and 3D environment similar to the in vivo settings as well as optimizing the properties, including injectability, compressibility, and bioactivity. Moreover, the 3D morphology regulates cellular interaction and mediates growth, migration, and differentiation of cell for matrix remodeling. The variation among scaffold structures, functions and applications depends on the selection of electrospinning materials and methods as well as on the post-processing of electrospun scaffolds. This review summarizes the recent new forms for building electrospun 3D nanofiber scaffolds for TE applications. A variety of approaches aimed at the fabrication of 3D electrospun scaffolds, such as multilayering electrospinning, sacrificial agent electrospinning, wet electrospinning, ultrasound-enhanced electrospinning as well as post-processing techniques, including gas foaming, ultrasonication, short fiber assembly, 3D printing, electrospraying, and so on are discussed, along with their advantages, limitations and applications. Meanwhile, the current challenges and prospects of 3D electrospun scaffolds are rationally discussed, providing an insight into developing the vibrant fields of biomedicine.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Dvir T, Timko BP, Kohane DS, Langer R. Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 2011;6:13–22. https://doi.org/10.1038/nnano.2010.246 .

    CAS  Article  Google Scholar 

  2. Cheng J, Jun Y, Qin J, Lee SH. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 2017;114:121–43. https://doi.org/10.1016/j.biomaterials.2016.10.040 .

    CAS  Article  Google Scholar 

  3. Wan X, Zhao Y, Li Z, Li L. Emerging polymeric electrospun fibers: from structural diversity to application in flexible bioelectronics and tissue engineering. Exploration 2022;2:20210029. https://doi.org/10.1002/exp.20210029 .

    Article  Google Scholar 

  4. Matson JB, Zha RH, Stupp SI. Peptide self-assembly for crafting functional biological materials. Curr Opin Solid State Mater Sci 2011;15:225–35. https://doi.org/10.1016/j.cossms.2011.08.001 .

    CAS  Article  Google Scholar 

  5. Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 2011;32:9622–9. https://doi.org/10.1016/j.biomaterials.2011.09.009 .

    CAS  Article  Google Scholar 

  6. Wade RJ, Burdick JA. Engineering ECM signals into biomaterials. Mater Today 2012;15:454–9. https://doi.org/10.1016/S1369-7021(12)70197-9 .

    CAS  Article  Google Scholar 

  7. Khajavi R, Abbasipour M, Bahador A. Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J Appl Polym Sci 2016;133:1–19. https://doi.org/10.1002/app.42883 .

    CAS  Article  Google Scholar 

  8. Greiner A, Wendorff JH. Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed 2007;46:5670–703. https://doi.org/10.1002/anie.200604646 .

    CAS  Article  Google Scholar 

  9. Wang X, Ding B, Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 2013;16:229–41. https://doi.org/10.1016/j.mattod.2013.06.005 .

    CAS  Article  Google Scholar 

  10. Li D, Xia Y. Electrospinning of nanofibers: Reinventing the wheel? Adv Mater 2004;16:1151–70. https://doi.org/10.1002/adma.200400719 .

    CAS  Article  Google Scholar 

  11. Abd Razak SI, Wahab IF, Fadil F, Dahli FN, Md Khudzari AZ, Adeli H. A review of electrospun conductive polyaniline based nanofiber composites and blends: processing features, applications, and future directions. Adv Mater Sci Eng. 2015. https://doi.org/10.1155/2015/356286.

    Article  Google Scholar 

  12. Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res 2017;50:1976–87. https://doi.org/10.1021/acs.accounts.7b00218 .

    CAS  Article  Google Scholar 

  13. Chen Y, Sha M, Liu M, Morsi Y, Mo X. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioact Mater 2020;5:963–79. https://doi.org/10.1016/j.bioactmat.2020.06.023 .

    Article  Google Scholar 

  14. Liu W, Thomopoulos S, Xia Y. Electrospun nanofibers for regenerative medicine. Adv Healthc Mater 2012;1:10–25. https://doi.org/10.1002/adhm.201100021 .

    CAS  Article  Google Scholar 

  15. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci 2010;123:4195–200. https://doi.org/10.1242/jcs.023820 .

    CAS  Article  Google Scholar 

  16. Bancelin S, Aimé C, Gusachenko I, Kowalczuk L, Latour G, Coradin T, Schanne-Klein MC. Determination of collagen fibril size via absolute measurements of second-harmonic generation signals. Nat Commun 2014;5:1–8. https://doi.org/10.1038/ncomms5920 .

    CAS  Article  Google Scholar 

  17. Agarwal S, Wendorff JH, Greiner A. Progress in the field of electrospinning for tissue engineering applications. Adv Mater 2009;21:3343–51. https://doi.org/10.1002/adma.200803092 .

    CAS  Article  Google Scholar 

  18. Aamodt JM, Grainger DW. Extracellular matrix-based biomaterial scaffolds and the host response. Biomaterials 2016;86:68–82. https://doi.org/10.1016/j.biomaterials.2016.02.003 .

    CAS  Article  Google Scholar 

  19. Du J, Yarema KJ. Carbohydrate engineered cells for regenerative medicine. Adv Drug Deliv Rev 2010;62:671–82. https://doi.org/10.1016/j.addr.2010.01.003 .

    CAS  Article  Google Scholar 

  20. Xie X, Chen Y, Wang X, Xu X, Shen Y, Aldalbahi A, Fetz AE, Bowlin GL, El-Newehy M, Mo X. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. J Mater Sci Technol. 2020;59:243–61. https://doi.org/10.1016/j.jmst.2020.04.037.

    Article  Google Scholar 

  21. Dutta RC, Dey M, Dutta AK, Basu B. Competent processing techniques for scaffolds in tissue engineering. Biotechnol Adv 2017;35:240–50. https://doi.org/10.1016/j.biotechadv.2017.01.001 .

    CAS  Article  Google Scholar 

  22. Tang X, Thankappan SK, Lee P, Fard SE, Harmon MD, Tran K, Yu X. Polymeric biomaterials in tissue engineering and regenerative medicine. Elsevier Inc.; 2014. https://doi.org/10.1016/B978-0-12-396983-5.00022-3.

  23. Chen ZG, Wang PW, Wei B, Mo XM, Cui FZ. Electrospun collagen-chitosan nanofiber: a biomimetic extracellular matrix for endothelial cell and smooth muscle cell. Acta Biomater 2010;6:372–82. https://doi.org/10.1016/j.actbio.2009.07.024 .

    CAS  Article  Google Scholar 

  24. Brenner EK, Schiffman JD, Thompson EA, Toth LJ, Schauer CL. Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. Carbohydr Polym 2012;87:926–9. https://doi.org/10.1016/j.carbpol.2011.07.033 .

    CAS  Article  Google Scholar 

  25. Jin D, Hu J, Xia D, Liu A, Kuang H, Du J, Mo X, Yin M. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo. Int J Nanomed 2019;14:4261–76. https://doi.org/10.2147/IJN.S205569 .

    CAS  Article  Google Scholar 

  26. Wu T, Zheng H, Chen J, Wang Y, Sun B, Morsi Y, El-Hamshary H, Al-Deyab SS, Chen C, Mo X. Application of a bilayer tubular scaffold based on electrospun poly(l-lactide-co-caprolactone)/collagen fibers and yarns for tracheal tissue engineering. J Mater Chem B 2017;5:139–50. https://doi.org/10.1039/c6tb02484j .

    CAS  Article  Google Scholar 

  27. Panzavolta S, Gioffrè M, Focarete ML, Gualandi C, Foroni L, Bigi A. Electrospun gelatin nanofibers: optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomater 2011;7:1702–9. https://doi.org/10.1016/j.actbio.2010.11.021 .

    CAS  Article  Google Scholar 

  28. Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat Rev Mater 2018;3:159–73. https://doi.org/10.1038/s41578-018-0023-x .

    CAS  Article  Google Scholar 

  29. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 2003;63:2223–53. https://doi.org/10.1016/S0266-3538(03)00178-7 .

    CAS  Article  Google Scholar 

  30. Zhou T, Wang N, Xue Y, Ding T, Liu X, Mo X, Sun J. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B Biointerfaces 2016;143:415–22. https://doi.org/10.1016/j.colsurfb.2016.03.052 .

    CAS  Article  Google Scholar 

  31. Pang Y, Qin A, Lin X, Yang L, Wang Q, Wang Z, Shan Z, Li S, Wang J, Fan S, Hu Q. Oncotarget 35583 www.impactjournals.com/oncotarget Biodegradable and biocompatible high elastic chitosan scaffold is cell-friendly both in vitro and in vivo. Oncotarget. 2017;8:35583–91.

    Article  Google Scholar 

  32. Gurumurthy B, Griggs JA, Janorkar AV. Optimization of collagen-elastin-like polypeptide composite tissue engineering scaffolds using response surface methodology. J Mech Behav Biomed Mater 2018;84:116–25. https://doi.org/10.1016/j.jmbbm.2018.04.019 .

    CAS  Article  Google Scholar 

  33. Rad LR, Momeni A, Ghazani BF, Irani M, Mahmoudi M, Noghreh B. Removal of Ni2+ and Cd2+ ions from aqueous solutions using electrospun PVA/zeolite nanofibrous adsorbent. Chem Eng J 2014;256:119–27. https://doi.org/10.1016/j.cej.2014.06.066 .

    CAS  Article  Google Scholar 

  34. Ma J, He Y, Liu X, Chen W, Wang A, Lin CY, Mo X, Ye X. A novel electrospun-aligned nanoyarn/three-dimensional porous nanofibrous hybrid scaffold for annulus fibrosus tissue engineering. Int J Nanomed 2018;13:1553–67. https://doi.org/10.2147/IJN.S143990 .

    CAS  Article  Google Scholar 

  35. Zhang K, Fu Q, Yoo J, Chen X, Chandra P, Mo X, Song L, Atala A, Zhao W. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: an in vitro evaluation of biomimetic mechanical property and cell growth environment. Acta Biomater 2017;50:154–64. https://doi.org/10.1016/j.actbio.2016.12.008 .

    CAS  Article  Google Scholar 

  36. Kuang H, Wang Y, Hu J, Wang C, Lu S, Mo X. A method for preparation of an internal layer of artificial vascular graft co-modified with salvianolic acid B and heparin. ACS Appl Mater Interfaces 2018;10:19365–72. https://doi.org/10.1021/acsami.8b02602 .

    CAS  Article  Google Scholar 

  37. Rinoldi C, Kijeńska E, Chlanda A, Choinska E, Khenoussi N, Tamayol A, Khademhosseini A, Swieszkowski W. Nanobead-on-string composites for tendon tissue engineering. J Mater Chem B 2018;6:3116–27. https://doi.org/10.1039/c8tb00246k .

    CAS  Article  Google Scholar 

  38. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 2019;119:5298–415. https://doi.org/10.1021/acs.chemrev.8b00593 .

    CAS  Article  Google Scholar 

  39. Huang W, Xiao Y, Shi X. Construction of electrospun organic/inorganic hybrid nanofibers for drug delivery and tissue engineering applications. Adv Fiber Mater 2019;1:32–45. https://doi.org/10.1007/s42765-019-00007-w .

    Article  Google Scholar 

  40. Heuer-Jungemann A, Feliu N, Bakaimi I, Hamaly M, Alkilany A, Chakraborty I, Masood A, Casula MF, Kostopoulou A, Oh E, Susumu K, Stewart MH, Medintz IL, Stratakis E, Parak WJ, Kanaras AG. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem Rev 2019;119:4819–80. https://doi.org/10.1021/acs.chemrev.8b00733 .

    CAS  Article  Google Scholar 

  41. Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater 2012;8:1401–21. https://doi.org/10.1016/j.actbio.2011.11.017 .

    CAS  Article  Google Scholar 

  42. Hossain KMZ, Patel U, Ahmed I. Development of microspheres for biomedical applications: a review. Prog Biomater 2015;4:1–19. https://doi.org/10.1007/s40204-014-0033-8 .

    CAS  Article  Google Scholar 

  43. Denry I, Kuhn LT. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dent Mater 2016;32:43–53. https://doi.org/10.1016/j.dental.2015.09.008 .

    CAS  Article  Google Scholar 

  44. Poologasundarampillai G, Wang D, Li S, Nakamura J, Bradley R, Lee PD, Stevens MM, McPhail DS, Kasuga T, Jones JR. Cotton-wool-like bioactive glasses for bone regeneration. Acta Biomater 2014;10:3733–46. https://doi.org/10.1016/j.actbio.2014.05.020 .

    CAS  Article  Google Scholar 

  45. Liang R, Zhao J, Li B, Cai P, Loh XJ, Xu C, Chen P, Kai D, Zheng L. Implantable and degradable antioxidant poly(ε-caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials 2020;230:119601. https://doi.org/10.1016/j.biomaterials.2019.119601 .

    CAS  Article  Google Scholar 

  46. Ponnusamy VK, Nguyen DD, Dharmaraja J, Shobana S, Banu JR, Saratale RG, Chang SW, Kumar G. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour Technol 2019;271:462–72. https://doi.org/10.1016/j.biortech.2018.09.070 .

    CAS  Article  Google Scholar 

  47. Wang C, Kelley SS, Venditti RA. Lignin-based thermoplastic materials. Chemsuschem 2016;9:770–83. https://doi.org/10.1002/cssc.201501531 .

    CAS  Article  Google Scholar 

  48. Wang Z, Lin M, Xie Q, Sun H, Huang Y, Zhang DD, Yu Z, Bi X, Chen J, Wang J, Shi W, Gu P, Fan X. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration. Int J Nanomed 2016;11:1483–500. https://doi.org/10.2147/IJN.S97445 .

    CAS  Article  Google Scholar 

  49. Jin HJ, Chen J, Karageorgiou V, Altman GH, Kaplan DL. Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 2004;25:1039–47. https://doi.org/10.1016/S0142-9612(03)00609-4 .

    CAS  Article  Google Scholar 

  50. Cai K, Yao K, Lin S, Yang Z, Li X. Poly(D,L-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro. Biomaterals. 2002;23:1153–60.

    CAS  Article  Google Scholar 

  51. Sun B, Zhou Z, Li D, Wu T, Zheng H, Liu J, Wang G, Yu Y, Mo X. Polypyrrole-coated poly(l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous nerve guidance conduit induced nerve regeneration in rat. Mater Sci Eng C 2019;94:190–9. https://doi.org/10.1016/j.msec.2018.09.021 .

    CAS  Article  Google Scholar 

  52. Fomby P, Cherlin AJ, Hadjizadeh A, Doillon CJ, Sueblinvong V, Weiss DJ, Bates JHT, Gilbert T, Liles WC, Lutzko C, Rajagopal J, Prockop DJ, Chambers D, Giangreco A, Keating A, Kotton D, Lelkes PI, Wagner DE, Prockop DJ. Stem cells and cell therapies in lung biology and diseases: Conference report. Ann Am Thorac Soc 2010;12:181–204. https://doi.org/10.1002/term .

    Article  Google Scholar 

  53. Huang ZB, Yin GF, Liao XM, Gu JW. Conducting polypyrrole in tissue engineering applications. Front Mater Sci 2014;8:39–45. https://doi.org/10.1007/s11706-014-0238-8 .

    Article  Google Scholar 

  54. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 2014;39:862–90. https://doi.org/10.1016/j.progpolymsci.2013.06.002 .

    CAS  Article  Google Scholar 

  55. Blakeney BA, Tambralli A, Anderson JM, Andukuri A, Lim DJ, Dean DR, Jun HW. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials 2011;32:1583–90. https://doi.org/10.1016/j.biomaterials.2010.10.056 .

    CAS  Article  Google Scholar 

  56. Wu T, Huang C, Li D, Yin A, Liu W, Wang J, Chen J, Ei-Hamshary H, Al-Deyab SS, Mo X. A multi-layered vascular scaffold with symmetrical structure by bi-directional gradient electrospinning. Colloids Surf B Biointerfaces. 2015;133:179–88. https://doi.org/10.1016/j.colsurfb.2015.05.048.

    CAS  Article  Google Scholar 

  57. Hu Q, Su C, Zeng Z, Zhang H, Feng R, Feng J, Li S. Fabrication of multilayer tubular scaffolds with aligned nanofibers to guide the growth of endothelial cells. J Biomater Appl 2020;35:553–66. https://doi.org/10.1177/0885328220935090 .

    CAS  Article  Google Scholar 

  58. Wu T, Zhang J, Wang Y, Li D, Sun B, El-Hamshary H, Yin M, Mo X. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Mater Sci Eng C 2018;82:121–9. https://doi.org/10.1016/j.msec.2017.08.072 .

    CAS  Article  Google Scholar 

  59. Dias JR, Baptista-Silva S, Sousa A, Oliveira AL, Bártolo PJ, Granja PL. Biomechanical performance of hybrid electrospun structures for skin regeneration. Mater Sci Eng C 2018;93:816–27. https://doi.org/10.1016/j.msec.2018.08.050 .

    CAS  Article  Google Scholar 

  60. Shokrollahi M, Bahrami SH, Nazarpak MH, Solouk A. Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly(vinyl alcohol) and polycaprolactone as a potential wound dressing. Int J Biol Macromol 2020;147:547–59. https://doi.org/10.1016/j.ijbiomac.2020.01.067 .

    CAS  Article  Google Scholar 

  61. Birhanu G, Tanha S, Akbari Javar H, Seyedjafari E, Zandi-Karimi A, Kiani B, Dehkordi. Dexamethasone loaded multi-layer poly-l-lactic acid/pluronic P123 composite electrospun nanofiber scaffolds for bone tissue engineering and drug delivery. Pharm Dev Technol. 2019;24:338–47. https://doi.org/10.1080/10837450.2018.1481429.

    CAS  Article  Google Scholar 

  62. Aghajanpoor M, Hashemi-Najafabadi S, Baghaban- Eslaminejad M, Bagheri F, Mohammad Mousavi S, Azam F, Sayyahpour. The effect of increasing the pore size of nanofibrous scaffolds on the osteogenic cell culture using a combination of sacrificial agent electrospinning and ultrasonication. J Biomed Mater Res Part A. 2017;105:1887–99. https://doi.org/10.1002/jbm.a.36052.

    CAS  Article  Google Scholar 

  63. Türker E, Yildiz ÜH, Arslan A, Yildiz. Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture. Int J Biol Macromol. 2019;139:1054–62. https://doi.org/10.1016/j.ijbiomac.2019.08.082.

    CAS  Article  Google Scholar 

  64. Hodge J, Quint C. The improvement of cell infiltration in an electrospun scaffold with multiple synthetic biodegradable polymers using sacrificial PEO microparticles. J Biomed Mater Res Part A 2019;107:1954–64. https://doi.org/10.1002/jbm.a.36706 .

    CAS  Article  Google Scholar 

  65. Kishan AP, Cosgriff-Hernandez EM. Recent advancements in electrospinning design for tissue engineering applications: a review. J Biomed Mater Res Part A 2017;105:2892–905. https://doi.org/10.1002/jbm.a.36124 .

    CAS  Article  Google Scholar 

  66. Chen Z, Ma S, Hu Y, Lv F, Zhang Y. Preparation of Bi-based porous and magnetic electrospun fibers and their photocatalytic properties in weak polar medium. Colloids Surf A Physicochem Eng Asp 2021;610:125718. https://doi.org/10.1016/j.colsurfa.2020.125718 .

    CAS  Article  Google Scholar 

  67. Zhou M, Zhou J, Li R, Xie E. Preparation of aligned ultra-long and diameter-controlled silicon oxide nanotubes by plasma enhanced chemical vapor deposition using electrospun pvp nanofiber template. Nanoscale Res Lett 2010;5:279–85. https://doi.org/10.1007/s11671-009-9476-6 .

    CAS  Article  Google Scholar 

  68. Sajedeh K, Atefeh S, Hamid M, Saeedeh M, Jose L, Shahriar MS, Seeram R. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med. 2016;10:715–38. https://doi.org/10.1002/term.

    Article  Google Scholar 

  69. Nosar MN, Salehi M, Ghorbani S, Beiranvand SP, Goodarzi A, Azami M. Characterization of wet-electrospun cellulose acetate based 3-dimensional scaffolds for skin tissue engineering applications: influence of cellulose acetate concentration. Cellulose 2016;23:3239–48. https://doi.org/10.1007/s10570-016-1026-7 .

    CAS  Article  Google Scholar 

  70. Kishimoto Y, Kobashi T, Morikawa H, Tamada Y. Production of three-dimensional silk fibroin nanofiber non-woven fabric by wet electrospinning. J Silk Sci Technol Japan. 2017;25:49–57. https://doi.org/10.11417/silk.25.49.

    Article  Google Scholar 

  71. Wu T, Zhang J, Wang Y, Sun B, Guo X, Morsi Y, El-Hamshary H, El-Newehy M, Mo X. Development of dynamic liquid and conjugated electrospun poly(L-lactide-co-caprolactone)/collagen nanoyarns for regulating vascular smooth muscle cells growth. J Biomed Nanotechnol 2017;13:303–12. https://doi.org/10.1166/jbn.2017.2352 .

    CAS  Article  Google Scholar 

  72. Sun B, Li J, Liu W, Aqeel BM, El-Hamshary H, Al-Deyab SS, Mo X. Fabrication and characterization of mineralized P(LLA-CL)/SF three-dimensional nanoyarn scaffolds. Iran Polym J (English Ed). 2015;24:29–40. https://doi.org/10.1007/s13726-014-0297-9.

    CAS  Article  Google Scholar 

  73. Farzamfar S, Naseri-Nosar M, Vaez A, Esmaeilpour F, Ehterami A, Sahrapeyma H, Samadian H, Hamidieh AA, Ghorbani S, Goodarzi A, Azimi A, Salehi M. Neural tissue regeneration by a gabapentin-loaded cellulose acetate/gelatin wet-electrospun scaffold. Cellulose 2018;25:1229–38. https://doi.org/10.1007/s10570-017-1632-z .

    CAS  Article  Google Scholar 

  74. Wu J, Hong Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact Mater 2016;1:56–64. https://doi.org/10.1016/j.bioactmat.2016.07.001 .

    Article  Google Scholar 

  75. Wu J, Huang C, Liu W, Yin A, Chen W, He C, Wang H, Liu S, Fan C, Bowlin GL, Mo X. Cell infiltration and vascularization in porous nanoyarn scaffolds prepared by dynamic liquid electrospinning. J Biomed Nanotechnol 2014;10:603–14. https://doi.org/10.1166/jbn.2014.1733 .

    CAS  Article  Google Scholar 

  76. Nieminen HJ, Laidmäe I, Salmi A, Rauhala T, Paulin T, Heinämäki J, Hæggström E. Ultrasound-enhanced electrospinning. Sci Rep 2018;8:1–6. https://doi.org/10.1038/s41598-018-22124-z .

    CAS  Article  Google Scholar 

  77. Partheniadis I, Nikolakakis I, Laidmäe I, Heinämäki J. A mini-review: needleless electrospinning of nanofibers for pharmaceutical and biomedical applications. Processes 2020;8:673. https://doi.org/10.3390/PR8060673 .

    CAS  Article  Google Scholar 

  78. Hakkarainen E, Kõrkjas A, Laidmäe I, Lust A, Semjonov K, Kogermann K, Nieminen HJ, Salmi A, Korhonen O, Haeggström E, Heinämäki J. Comparison of traditional and ultrasound-enhanced electrospinning in fabricating nanofibrous drug delivery systems. Pharmaceutics 2019;11:1–10. https://doi.org/10.3390/pharmaceutics11100495 .

    CAS  Article  Google Scholar 

  79. Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 2006;27:596–606. https://doi.org/10.1016/j.biomaterials.2005.05.084 .

    CAS  Article  Google Scholar 

  80. Partheniadis I, Athanasiou K, Laidmäe I, Heinämäki J, Nikolakakis I. Physicomechanical characterization and tablet compression of theophylline nanofibrous mats prepared by conventional and ultrasound enhanced electrospinning. Int J Pharm 2022;616:121558. https://doi.org/10.1016/j.ijpharm.2022.121558 .

    CAS  Article  Google Scholar 

  81. Chen Y, Xu W, Shafiq M, Tang J, Hao J, Xie X, Yuan Z, Xiao X, Liu Y, Mo X. Three-dimensional porous gas-foamed electrospun nanofiber scaffold for cartilage regeneration. J Colloid Interface Sci 2021;603:94–109. https://doi.org/10.1016/j.jcis.2021.06.067 .

    CAS  Article  Google Scholar 

  82. Chen Y, Jia Z, Shafiq M, Xie X, Xiao X, Castro R, Rodrigues J, Wu J, Zhou G, Mo X. Gas foaming of electrospun poly(L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration. Colloids Surf B Biointerfaces. 2021;201:111637. https://doi.org/10.1016/j.colsurfb.2021.111637.

    CAS  Article  Google Scholar 

  83. Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv Mater 2015;27:1143–69. https://doi.org/10.1002/adma.201403354 .

    CAS  Article  Google Scholar 

  84. Lin W, Chen M, Qu T, Li J, Man Y. Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering. J Biomed Mater Res Part B Appl Biomater. 2020;108:1311–21. https://doi.org/10.1002/jbm.b.34479.

    CAS  Article  Google Scholar 

  85. Joshi MK, Pant HR, Tiwari AP, Kim HJ, Park CH, Kim CS. Multi-layered macroporous three-dimensional nanofibrous scaffold via a novel gas foaming technique. Chem Eng J. 2015;275:79–88. https://doi.org/10.1016/j.cej.2015.03.121.

    CAS  Article  Google Scholar 

  86. Jiang J, Carlson MA, Teusink MJ, Wang H, MacEwan MR, Xie J. Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique. ACS Biomater Sci Eng 2015;1:991–1001. https://doi.org/10.1021/acsbiomaterials.5b00238 .

    CAS  Article  Google Scholar 

  87. Jiang J, Li Z, Wang H, Wang Y, Carlson MA, Teusink MJ, MacEwan MR, Gu L, Xie J. Expanded 3D nanofiber scaffolds: cell penetration, neovascularization, and host response. Adv Healthc Mater 2016;5:2993–3003. https://doi.org/10.1002/adhm.201600808 .

    CAS  Article  Google Scholar 

  88. Gao Q, Gu H, Zhao P, Zhang C, Cao M, Fu J, He Y. Fabrication of electrospun nanofibrous scaffolds with 3D controllable geometric shapes. Mater Des 2018;157:159–69. https://doi.org/10.1016/j.matdes.2018.07.042 .

    CAS  Article  Google Scholar 

  89. Jing X, Li H, Mi HY, Liu YJ, Tan YM. Fabrication of fluffy shish-kebab structured nanofibers by electrospinning, CO2 escaping foaming and controlled crystallization for biomimetic tissue engineering scaffolds. Chem Eng J 2019;372:785–95. https://doi.org/10.1016/j.cej.2019.04.194 .

    CAS  Article  Google Scholar 

  90. Jiang J, Chen S, Wang H, Carlson MA, Gombart AF, Xie J. CO2-expanded nanofiber scaffolds maintain activity of encapsulated bioactive materials and promote cellular infiltration and positive host response. Acta Biomater 2018;68:237–48. https://doi.org/10.1016/j.actbio.2017.12.018 .

    CAS  Article  Google Scholar 

  91. Zhang K, Bai X, Yuan Z, Cao X, Jiao X, Li Y, Qin Y, Wen Y, Zhang X. Layered nanofiber sponge with an improved capacity for promoting blood coagulation and wound healing. Biomaterials 2019;204:70–9. https://doi.org/10.1016/j.biomaterials.2019.03.008 .

    CAS  Article  Google Scholar 

  92. Rao F, Yuan Z, Li M, Yu F, Fang X, Jiang B, Wen Y, Zhang P. Expanded 3D nanofibre sponge scaffolds by gas-foaming technique enhance peripheral nerve regeneration. Artif Cells, Nanomedicine, Biotechnol 2019;47:491–500. https://doi.org/10.1080/21691401.2018.1557669 .

    CAS  Article  Google Scholar 

  93. Chen Y, Xu W, Shafiq M, Song D, Xie X, Yuan Z, El-Newehy M, El-Hamshary H, Morsi Y, Liu Y, Mo X. Chondroitin sulfate cross-linked three-dimensional tailored electrospun scaffolds for cartilage regeneration. Mater Sci Eng C2022https://doi.org/10.1016/j.msec.2022.112643.

  94. Kim SE, Tiwari AP. Three dimensional polycaprolactone/cellulose scaffold containing calcium-based particles: a new platform for bone regeneration. Carbohydr Polym 2020;250:116880. https://doi.org/10.1016/j.carbpol.2020.116880 .

    CAS  Article  Google Scholar 

  95. Lee JB, Jeong SI, Bae MS, Yang DH, Heo DN, Kim CH, Alsberg E, Kwon IK. Highly porous electrospun nanofibers enhanced by ultrasonication for improved cellular infiltration. Tissue Eng Part A 2011;17:2695–702. https://doi.org/10.1089/ten.tea.2010.0709 .

    CAS  Article  Google Scholar 

  96. Jeong SI, Burns NA, Bonino CA, Kwon IK, Khan SA, Alsberg E. Improved cell infiltration of highly porous 3D nanofibrous scaffolds formed by combined fiber-fiber charge repulsions and ultra-sonication. J Mater Chem B 2014;2:8116–22. https://doi.org/10.1039/c4tb01487a .

    CAS  Article  Google Scholar 

  97. Rahmani A, Hashemi-Najafabadi S, Eslaminejad MB, Bagheri F, Sayahpour FA. The effect of modified electrospun PCL-nHA-nZnO scaffolds on osteogenesis and angiogenesis. J Biomed Mater Res Part A 2019;107:2040–52. https://doi.org/10.1002/jbm.a.36717 .

    CAS  Article  Google Scholar 

  98. Ahtzaz S, Nasir M, Shahzadi L, Iqbal F, Chaudhry AA, Yar M, Ur Rehman I, Amir W, Anjum A, Arshad R. A study on the effect of zinc oxide and zinc peroxide nanoparticles to enhance angiogenesis-pro-angiogenic grafts for tissue regeneration applications. Mater Des. 2017;132:409–18. https://doi.org/10.1016/j.matdes.2017.07.023.

    CAS  Article  Google Scholar 

  99. Laurenti M, Cauda V. ZnO nanostructures for tissue engineering applications. Nanomaterials 2017;7:374. https://doi.org/10.3390/nano7110374 .

    CAS  Article  Google Scholar 

  100. Chen W, Ma J, Zhu L, Morsi Y, Ei-hamshary H, Al-deyab SS, Mo X. Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering. Colloids Surf B Biointerfaces 2016;142:165–72. https://doi.org/10.1016/j.colsurfb.2016.02.050 .

    CAS  Article  Google Scholar 

  101. Chen W, Chen S, Morsi Y, El-Hamshary H, El-Newhy M, Fan C, Mo X. Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces 2016;8:24415–25. https://doi.org/10.1021/acsami.6b06825 .

    CAS  Article  Google Scholar 

  102. Ye K, Liu D, Kuang H, Cai J, Chen W, Sun B, Xia L, Fang B, Morsi Y, Mo X. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Interface Sci 2019;534:625–36. https://doi.org/10.1016/j.jcis.2018.09.071 .

    CAS  Article  Google Scholar 

  103. Mader M, Jérôme V, Freitag R, Agarwal S, Greiner A. Ultraporous, compressible, wettable polylactide/polycaprolactone sponges for tissue engineering. Biomacromol 2018;19:1663–73. https://doi.org/10.1021/acs.biomac.8b00434 .

    CAS  Article  Google Scholar 

  104. Chen S, Chen W, Chen Y, Mo X, Fan C. Chondroitin sulfate modified 3D porous electrospun nanofiber scaffolds promote cartilage regeneration. Mater Sci Eng C 2021;118:1–12. https://doi.org/10.1016/j.msec.2020.111312 .

    CAS  Article  Google Scholar 

  105. Sutherland AJ, Converse GL, Hopkins RA, Detamore MS. The bioactivity of cartilage extracellular matrix in articular cartilage regeneration. Adv Healthc Mater 2015;4:29–39. https://doi.org/10.1002/adhm.201400165 .

    CAS  Article  Google Scholar 

  106. Almeida HV, Liu Y, Cunniffe GM, Mulhall KJ, Matsiko A, Buckley CT, O’Brien FJ, Kelly DJ. Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Acta Biomater 2014;10:4400–9. https://doi.org/10.1016/j.actbio.2014.05.030 .

    CAS  Article  Google Scholar 

  107. Li Y, Liu Y, Xun X, Zhang W, Xu Y, Gu D. Three-dimensional porous scaffolds with biomimetic microarchitecture and bioactivity for cartilage tissue engineering. ACS Appl Mater Interfaces 2019;11:36359–70. https://doi.org/10.1021/acsami.9b12206 .

    CAS  Article  Google Scholar 

  108. Shen Y, Xu Y, Yi B, Wang X, Tang H, Chen C, Zhang Y. Engineering a highly biomimetic chitosan-based cartilage scaffold by using short fibers and a cartilage-decellularized matrix. Biomacromol 2021;22:2284–97. https://doi.org/10.1021/acs.biomac.1c00366 .

    CAS  Article  Google Scholar 

  109. Wang L, Qiu Y, Guo Y, Si Y, Liu L, Cao J, Yu J, Li X, Zhang Q, Ding B. Smart, elastic, and nanofiber-based 3D scaffolds with self-deploying capability for osteoporotic bone regeneration. Nano Lett 2019;19:9112–20. https://doi.org/10.1021/acs.nanolett.9b04313 .

    CAS  Article  Google Scholar 

  110. Liu X, Chen M, Luo J, Zhao H, Zhou X, Gu Q, Yang H, Zhu X, Cui W, Shi Q. Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials 2021;276:121037. https://doi.org/10.1016/j.biomaterials.2021.121037 .

    CAS  Article  Google Scholar 

  111. Chen W, Xu Y, Liu Y, Wang Z, Li Y, Jiang G, Mo X, Zhou G. Three-dimensional printed electrospun fiber-based scaffold for cartilage regeneration. Mater Des 2019;179:107886. https://doi.org/10.1016/j.matdes.2019.107886 .

    CAS  Article  Google Scholar 

  112. Chen W, Xu Y, Li Y, Jia L, Mo X, Jiang G, Zhou G. 3D printing electrospinning fiber-reinforced decellularized extracellular matrix for cartilage regeneration. Chem Eng J 2020;382:122986. https://doi.org/10.1016/j.cej.2019.122986 .

    CAS  Article  Google Scholar 

  113. Yuan Z, Ren Y, Shafiq M, Chen Y, Tang H, Li B, El-Newehy M, El‐hamshary H, Morsi Y, Zheng H, Mo X. Converging 3D printing and electrospinning: effect of poly(L‐lactide)/gelatin based short nanofibers aerogels on tracheal regeneration. Macromol Biosci. 2021;2100342:2100342. https://doi.org/10.1002/mabi.202100342.

    CAS  Article  Google Scholar 

  114. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 2001;55:203–16. https://doi.org/10.1002/1097-4636(200105)55:2%3c203::AID-JBM1007%3e3.0.CO;2-7 .

    CAS  Article  Google Scholar 

  115. Naghieh S, Foroozmehr E, Badrossamay M, Kharaziha M. Combinational processing of 3D printing and electrospinning of hierarchical poly(lactic acid)/gelatin-forsterite scaffolds as a biocomposite: mechanical and biological assessment. Mater Des 2017;133:128–35. https://doi.org/10.1016/j.matdes.2017.07.051 .

    CAS  Article  Google Scholar 

  116. Chen W, Xu Y, Liu Y, Wang Z, Li Y, Jiang G, Mo X, Zhou G. Three-dimensional printed electrospun fiber-based scaffold for cartilage regeneration. Mater Des. 2019. https://doi.org/10.1016/j.matdes.2019.107886.

    Article  Google Scholar 

  117. Boda SK, Chen S, Chu K, Kim HJ, Xie J. Electrospraying electrospun nanofiber segments into injectable microspheres for potential cell delivery. ACS Appl Mater Interfaces 2018;10:25069–79. https://doi.org/10.1021/acsami.8b06386 .

    CAS  Article  Google Scholar 

  118. Yi B, Zhang H, Yu Z, Yuan H, Wang X, Zhang Y. Fabrication of high performance silk fibroin fibers: via stable jet electrospinning for potential use in anisotropic tissue regeneration. J Mater Chem B 2018;6:3934–45. https://doi.org/10.1039/c8tb00535d .

    CAS  Article  Google Scholar 

  119. Shen Y, Tu T, Yi B, Wang X, Tang H, Liu W, Zhang Y. Electrospun acid-neutralizing fibers for the amelioration of inflammatory response. Acta Biomater 2019;97:200–15. https://doi.org/10.1016/j.actbio.2019.08.014 .

    CAS  Article  Google Scholar 

  120. Zhang Z, Eyster TW, Ma PX. Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine 2016;11:1611–28. https://doi.org/10.2217/nnm-2016-0083 .

    CAS  Article  Google Scholar 

  121. Liu X, Jin X, Ma PX. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat Mater 2011;10:398–406. https://doi.org/10.1038/nmat2999 .

    CAS  Article  Google Scholar 

  122. John JV, Choksi M, Chen S, Boda SK, Su Y, McCarthy A, Teusink MJ, Reinhardt RA, Xie J. Tethering peptides onto biomimetic and injectable nanofiber microspheres to direct cellular response. Nanomed Nanotechnol Biol Med 2019;22:102081. https://doi.org/10.1016/j.nano.2019.102081 .

    CAS  Article  Google Scholar 

  123. Zhang B, Gao Y, Yang R, Ouyang Z, Yu H, Wang H, Shi X, Shen M. Tumor-anchoring drug-loaded fibrous microspheres for mr imaging-guided local chemotherapy and metastasis inhibition. Adv Fiber Mater 2022. https://doi.org/10.1007/s42765-022-00137-8 .

    Article  Google Scholar 

  124. John JV, McCarthy A, Wang H, Chen S, Su Y, Davis E, Li X, Park JS, Reinhardt RA, Xie J. Engineering biomimetic nanofiber microspheres with tailored size, predesigned structure, and desired composition via gas bubble–mediated coaxial electrospray. Small. 2020. https://doi.org/10.1002/smll.201907393.

    Article  Google Scholar 

  125. Yuan H, Zhao S, Tu H, Li B, Li Q, Feng B, Peng H, Zhang Y. Stable jet electrospinning for easy fabrication of aligned ultrafine fibers. J Mater Chem 2012;22:19634–8. https://doi.org/10.1039/c2jm33728b .

    CAS  Article  Google Scholar 

  126. Lian M, Han Y, Sun B, Xu L, Wang X, Ni B, Jiang W, Qiao Z, Dai K, Zhang X. A multifunctional electrowritten bi-layered scaffold for guided bone regeneration. Acta Biomater 2020;118:83–99. https://doi.org/10.1016/j.actbio.2020.08.017 .

    CAS  Article  Google Scholar 

  127. Qiao Z, Lian M, Han Y, Sun B, Zhang X, Jiang W, Li H, Hao Y, Dai K. Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials 2021;266:120385. https://doi.org/10.1016/j.biomaterials.2020.120385 .

    CAS  Article  Google Scholar 

  128. Han Y, Jia B, Lian M, Sun B, Wu Q, Sun B, Qiao Z, Dai K. High-precision, gelatin-based, hybrid, bilayer scaffolds using melt electro-writing to repair cartilage injury. Bioact Mater 2021;6:2173–86. https://doi.org/10.1016/j.bioactmat.2020.12.018 .

    CAS  Article  Google Scholar 

  129. Han Y, Lian M, Sun B, Jia B, Wu Q, Qiao Z, Dai K. Preparation of high precision multilayer scaffolds based on Melt Electro-Writing to repair cartilage injury. Theranostics 2020;10:10214–30. https://doi.org/10.7150/thno.47909 .

    CAS  Article  Google Scholar 

  130. Xu Y, Duan L, Li Y, She Y, Zhu J, Zhou G, Jiang G, Yang Y. Nanofibrillar decellularized Wharton’s jelly matrix for segmental tracheal repair. Adv Funct Mater 2020;30:1910067. https://doi.org/10.1002/adfm.201910067 .

    CAS  Article  Google Scholar 

  131. John JV, McCarthy A, Wang H, Luo Z, Li H, Wang Z, Cheng F, Zhang YS, Xie J. Freeze-casting with 3D-printed templates creates anisotropic microchannels and patterned macrochannels within biomimetic nanofiber aerogels for rapid cellular infiltration. Adv Healthc Mater 2021;2100238:2100238. https://doi.org/10.1002/adhm.202100238 .

    CAS  Article  Google Scholar 

  132. Zhang K, Jiao X, Zhou L, Wang J, Wang C, Qin Y, Wen Y. Biomaterials nanofibrous composite aerogel with multi-bioactive and fluid gating characteristics for promoting diabetic wound healing. Biomaterials 2021;276:121040. https://doi.org/10.1016/j.biomaterials.2021.121040 .

    CAS  Article  Google Scholar 

  133. Orr SB, Chainani A, Hippensteel KJ, Kishan A, Gilchrist C, Garrigues NW, Ruch DS, Guilak F, Little D. Aligned multilayered electrospun scaffolds for rotator cuff tendon tissue engineering. Acta Biomater 2015;24:117–26. https://doi.org/10.1016/j.actbio.2015.06.010 .

    CAS  Article  Google Scholar 

  134. Zhang K, Cao N, Guo X, Zou Q, Zhou S, Yang R, Zhao W, Mo X, Liu W, Fu Q. The fabrication of 3D surface scaffold of collagen/poly (L-lactide-co-caprolactone) with dynamic liquid system and its application in urinary incontinence treatment as a tissue engineered sub-urethral sling: in vitro and in vivo study. Neurourol Urodyn 2018;37:978–85. https://doi.org/10.1002/nau.23438 .

    CAS  Article  Google Scholar 

  135. Salehi M, Naseri-Nosar M, Azami M, Nodooshan SJ, Arish J. Comparative study of poly(L-lactic acid) scaffolds coated with chitosan nanoparticles prepared via ultrasonication and ionic gelation techniques. Tissue Eng Regen Med 2016;13:498–506. https://doi.org/10.1007/s13770-016-9083-4 .

    CAS  Article  Google Scholar 

  136. Kurpinski KT, Stephenson JT, Janairo RRR, Lee H, Li S. The effect of fiber alignment and heparin coating on cell infiltration into nanofibrous PLLA scaffolds. Biomaterials 2010;31:3536–42. https://doi.org/10.1016/j.biomaterials.2010.01.062 .

    CAS  Article  Google Scholar 

  137. Sell SA, Wolfe PS, Ericksen JJ, Simpson DG, Bowlin GL. Incorporating platelet-rich plasma into electrospun scaffolds for tissue engineering applications. Tissue Eng Part A 2011;17:2723–37. https://doi.org/10.1089/ten.tea.2010.0663 .

    CAS  Article  Google Scholar 

  138. Yuan Z, Sheng D, Jiang L, Shafiq M, A ur R Khan, Hashim R, Chen Y, Li B, Xie X, Chen J, Morsi Y, Mo X, Chen S. Vascular endothelial growth factor-capturing aligned electrospun polycaprolactone/gelatin nanofibers promote patellar ligament regeneration. Acta Biomater. 2022;140:233–246. https://doi.org/10.1016/j.actbio.2021.11.040.

  139. Stylianopoulos T, Bashur CA, Goldstein AS, Guelcher SA, Barocas VH. Computational predictions of the tensile properties of electrospun fibre meshes: effect of fibre diameter and fibre orientation. J Mech Behav Biomed Mater 2008;1:326–35. https://doi.org/10.1016/j.jmbbm.2008.01.003 .

    Article  Google Scholar 

  140. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C 2007;27:504–9. https://doi.org/10.1016/j.msec.2006.05.019 .

    CAS  Article  Google Scholar 

  141. Yang Z, Peng H, Wang W, Liu T. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 2010;116:2658–67. https://doi.org/10.1002/app .

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from National Nature Science Foundation of China (No. 32050410286), Science and Technology Commission of Shanghai Municipality (No. 20S31900900, 20DZ2254900), and Sino German Science Foundation Research Exchange Center (M-0263), National Advanced Functional Fiber Innovation Center (2021-fx020301), International Cooperation of 2021–2022 China and Poland Science and Technology Personnel Exchange Program (No. 17).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Shafiq, Norbert Radacsi or Xiumei Mo.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.I. : Fiber Materials for advanced applications.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Dong, X., Shafiq, M. et al. Recent Advancements on Three-Dimensional Electrospun Nanofiber Scaffolds for Tissue Engineering. Adv. Fiber Mater. (2022). https://doi.org/10.1007/s42765-022-00170-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42765-022-00170-7

Keywords

  • Electrospun
  • Nanofibers
  • Three-dimensional
  • Tissue engineering
  • Regenerative medicine
  • Scaffold
  • Polymer