Skip to main content

Advertisement

Log in

Dual-Performance Optimized Silks from Ultra-Low Dose Polymer Dots Feeding and Its Absorption, Distribution and Excretion in the Silkworms

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Fluorescent polymer dots (Pdots) have the advantages of excellent optical properties, great biocompatibility and high photostability. Herein, we feed ultra-low doses Pdots to silkworms for the first time and aim to prepare dual-performance modified silks. After Pdots feeding, the fluorescence signal of cocoons and degummed silks increases significantly, which is more stable and more uniform than that of post-treatment silks. Moreover, Pdots hinder the conformation transformation of silk fibroin and improve the mechanical property of twisted silk strand. The highest elongation at break point is 20.75 ± 0.03% and breaking strength is 271.7 ± 3.8 MPa. With excellent fluorescence and mechanical properties, the optimized silks are successfully applied as a scaffold for cell culture and imaging. Furthermore, we investigate the metabolism of Pdots in the silkworms for understanding the behaviours of Pdots in the process of silks synthesis and secretion.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang JG, Pu KY. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew Chem-Int Edit 2020;59:11717.

    Article  CAS  Google Scholar 

  2. Jiang YY, Huang JG, Xu C, Pu KY. Activatable polymer nanoagonist for second near-infrared photothermal immunotherapy of cancer. Nat Commun 2021;12:742.

    Article  CAS  Google Scholar 

  3. Zhang Y, He SS, Chen W, Liu YH, Zhang XF, Miao QQ, Pu KY. Activatable polymeric nanoprobe for near-infrared fluorescence and photoacoustic imaging of T lymphocytes. Angew Chem-Int Edit 2021;60:5921.

    Article  CAS  Google Scholar 

  4. Cao FW, Guo YX, Li Y, Tang SY, Yang YD, Yang H, Xiong LQ. Fast and accurate imaging of lymph node metastasis with multifunctional near-infrared polymer dots. Adv Funct Mater 2018;28:1707174.

    Article  Google Scholar 

  5. Huang JS, Jiang YY, Li JC, Huang JC, Pu KY. Molecular chemiluminescent probes with a very long near-infrared emission wavelength for in vivo imaging. Angew Chem-Int Edit 2020;60:3999.

    Article  Google Scholar 

  6. Guo YX, Li Y, Yang YD, Tang SY, Zhang YF, Xiong LQ. Multiscale imaging of brown adipose tissue in living mice/rats with fluorescent polymer dots. ACS Appl Mater Interfaces 2018;10:20884.

    Article  CAS  Google Scholar 

  7. Huang JS, Huang JG, Cheng PH, Jiang YY, Pu KY. Near-infrared chemiluminescent reporters for in vivo imaging of reactive oxygen and nitrogen species in kidneys. Adv Funct Mater 2020;30:2003628.

    Article  CAS  Google Scholar 

  8. Li JR, Li Y, Tang SY, Zhang YF, Zhang JX, Li YQ, Xiong LQ. Toxicity, uptake and transport mechanisms of dual-modal polymer dots in penny grass (Hydrocotyle vulgaris L.). Environ Pollut 2020;265:114877.

    Article  CAS  Google Scholar 

  9. Dong YP, Zheng YQ, Zhang KY, Yao YM, Wang LH, Li XR, Yu JY, Ding B. Electrospun nanofibrous materials for wound healing. Adv Fiber Mater 2020;2:212.

    Article  CAS  Google Scholar 

  10. Zhou Y, Wu JX, Li YY, Zhang W, Zou YS, Duan L, Yang X, Xiao B, Yi SX. Fabrication of sulfated silk fibroin-based blend nanofibrous membranes for lysozyme adsorption. Adv Fiber Mater 2021. https://doi.org/10.1007/s42765-021-00104-9 .

    Article  Google Scholar 

  11. Amirikia M, Shariatzadeh SMA, Jorsaraei SGA, Mehranjani MS. Auto-fluorescence of a silk fibroin-based scaffold and its interference with fluorophores in labeled cells. Eur Biophys J Biophys Lett 2018;47:573.

    Article  CAS  Google Scholar 

  12. Mondia JP, Amsden JJ, Lin DM, Dal Negro L, Kaplan DL, Omenetto FG. Rapid nanoimprinting of doped silk films for enhanced fluorescent emission. Adv Mater 2010;22:4596.

    Article  CAS  Google Scholar 

  13. Kurland NE, Dey T, Wang CZ, Kundu SC, Yadavalli VK. Silk protein lithography as a route to fabricate sericin microarchitectures. Adv Mater 2014;26:4431.

    Article  CAS  Google Scholar 

  14. Somashekarappa H, Annadurai V, Sangappa SG, Somashekar R. Structure-property relation in varieties of acid dye processed silk fibers. Mater Lett 2002;53:415.

    Article  CAS  Google Scholar 

  15. Zhou YY, Zhang J, Tang RC, Zhang J. Simultaneous dyeing and functionalization of silk with three natural yellow dyes. Ind Crop Prod 2015;64:224.

    Article  CAS  Google Scholar 

  16. Ji JY, Kang CM, Li K, He J, Ma Y. Comparison of structures of luminescent silkworm silk prepared by feeding and dyeing. Mater Res Innov 2014;18:817.

    Google Scholar 

  17. Zheng XT, Zhao ML, Zhang HH, Fan SN, Sha HL, Hu XC, Zhang YP. Intrinsically fluorescent silks from silkworms fed with rare-earth upconverting phosphors. ACS Biomater Sci Eng 2018;4:4021.

    Article  CAS  Google Scholar 

  18. Zhan Q, Fan SN, Wang D, Yao X, Shao HL, Zhang YP. Super-strong and uniform fluorescent composite silk from trace AIE nanoparticle feeding. Compos Commun 2020;21:100414.

    Article  Google Scholar 

  19. Fan SN, Zheng XT, Zhan Q, Zhang HH, Shao HL, Wang JX, Cao CB, Zhu MF, Wang D, Zhang YP. Super-strong and intrinsically fluorescent silkworm silk from carbon nanodots feeding. Nano-micro Lett 2019;11:75.

    Article  CAS  Google Scholar 

  20. Cai LY, Shao HL, Hu XC, Zhang YP. Reinforced and ultraviolet resistant silks from silkworms fed with titanium dioxide nanoparticles. ACS Sustain Chem Eng 2015;3:2551.

    Article  CAS  Google Scholar 

  21. Cao FW, Xiong LQ. Folic acid functionalized PFBT fluorescent polymer dots for tumor imaging. Chin J Chem 2016;34:570.

    Article  CAS  Google Scholar 

  22. Li Y, Yang YD, Tang SY, Zhang YF, Li XX, Guan WB, Ma F, Zhang CF, Xiong LQ. High-resolution imaging of the lymphatic vascular system in living mice/rats using dual-modal polymer dots. ACS Appl Bio Mater 2019;2:3877.

    Article  CAS  Google Scholar 

  23. Li K, Zhao JL, Zhang JJ, Ji JY, Ma Y, Liu XY, Xu HY. Direct in vivo functionalizing silkworm fibroin via molecular recognition. ACS Biomater Sci Eng 2015;1:494.

    Article  CAS  Google Scholar 

  24. Tansil NC, Li Y, Teng CP, Zhang SY, Win KY, Chen X, Liu XY, Han MY. Intrinsically colored and luminescent silk. Adv Mater 2011;23:1463.

    Article  CAS  Google Scholar 

  25. Asakura T, Umemura K, Nakazawa Y, Hirose H, Higham J, Knight D. Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori. Biomacromol 2007;8:175.

    Article  CAS  Google Scholar 

  26. Yang HY, Wang YL, Liu KS, Liu X, Chen FX, Xu WL. Facile fabrication of ultraviolet-protective silk fabrics via atomic layer deposition of TiO2 with subsequent polyvinylsilsesquioxane modification. Text Res J 2019;89:3529.

    Article  CAS  Google Scholar 

  27. Cheng L, Huang HM, Chen SY, Wang WL, Dai FY, Zhao HP. Characterization of silkworm larvae growth and properties of silk fibres after direct feeding of copper or silver nanoparticles. Mater Des 2017;129:125.

    Article  CAS  Google Scholar 

  28. Wu GH, Song P, Zhang DY, Liu ZY, Li L, Huang HM, Zhao HP, Wang NN, Zhu YQ. Robust composite silk fibers pulled out of silkworms directly fed with nanoparticles. Int J Biol Macromol 2017;104:533.

    Article  CAS  Google Scholar 

  29. Tansil NC, Li Y, Koh LD, Peng TC, Win KY, Liu XY, Han MY. The use of molecular fluorescent markers to monitor absorption and distribution of xenobiotics in a silkworm model. Biomaterials 2011;32:9576.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Grants from the National Natural Science Foundation of China (81974273, 81671738, 81301261 and 21374059), the National Key R&D Program of China (2016YFC1303100), and the Shanghai Pujiang Project (13PJ1405000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqin Xiong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, Y., Lu, S. et al. Dual-Performance Optimized Silks from Ultra-Low Dose Polymer Dots Feeding and Its Absorption, Distribution and Excretion in the Silkworms. Adv. Fiber Mater. 4, 845–858 (2022). https://doi.org/10.1007/s42765-022-00147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-022-00147-6

Keywords

Navigation