Skip to main content
Log in

Genomic instability evaluation in different cell line by random amplified polymorphic DNA-PCR analysis

  • Original Research Paper
  • Published:
Genome Instability & Disease Aims and scope Submit manuscript

Abstract

The cause of cancer is disorders and unstable genome. Some factors affect proper functioning of the DNA. These situations lead to cell death, cancer, inborn disorders, and overall functional decline contributing to aging. The integrity of the genome of all living organisms is constantly threatened by exogenous and endogenous DNA-damaging agents. An agent might interact directly with DNA and regulate the expression or directly by influencing DNA repair responses and so improve genomic stability. The development of widely applicable methods to monitor genomic instability gains importance nowadays. RAPD-PCR assay is a molecular method able to detect comparative DNA changes. This work is to show the applicability of the method to evaluate the ultimate changes caused in various cell-culture-derived DNA that might be a model for carcinogenesis, genomic instability and routine cell-culture work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The author has no material discussed in this article.

References

  • Aardema, M., Gibson, D., Hu, T., Mun, G., Curren, R., Hayden, P. (2005). Addressing animal testing concerns: A novel micronucleus assay using the human 3-D skin model, EpiDerm. Presented at the 5th World Congress on Alternatives & Animal Use in the Life Sciences.

  • Akgün, M., Pfeifer, N., & Kohlbacher, O. (2022). Efficient privacy-preserving whole-genome variant queries. Bioinformatics (oXford, England), 38(8), 2202–2210. https://doi.org/10.1093/bioinformatics/btac070

    Article  PubMed  CAS  Google Scholar 

  • Altonen, L. A., et al. (1994). Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Research, 54, 1645–1648.

    Google Scholar 

  • Anastasi, J., Le Beau, M. M., Vardiman, J. W., & Westbrook, C. A. (1990). Detection of numerical chromosomal abnormalities in neoplastic hematopoietic cells by in situ hybridization with a chromosome-specific probe. American Journal of Pathology, 136, 131–139.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Araten, D. J., Golde, D. W., et al. (2005). A quantitative measurement of the human somatic mutation rate. Cancer Research, 65(18), 8111–8117.

    Article  PubMed  CAS  Google Scholar 

  • Atienzar, F., Evenden, A., et al. (2000). Optimized RAPD analysis generates high-quality genomic DNA profiles at high annealing temperature. BioTechniques, 28(1), 52–54.

    Article  PubMed  CAS  Google Scholar 

  • Atienzar, F. A., Evenden, A. J., et al. (2002). Use of the random amplified polymorphic DNA (RAPD) assay for the detection of DNA damage and mutations: Possible implications of confounding factors. Biomarkers, 7(1), 94–101.

    Article  PubMed  CAS  Google Scholar 

  • Atienzar, F. A., & Jha, A. N. (2006). The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: A critical review. Mutation Research, 613(2–3), 76–102.

    Article  PubMed  CAS  Google Scholar 

  • Bender, M. A., Awa, A. A., Brooks, A. L., Evans, H. J., Groer, P. G., Littlefield, L. G., Pereira, C., Preston, R. J., & Wachholz, B. W. (1988). Current status of cytogenetic procedures to detect and quantify previous exposures to radiation. Mutation Research, 196, 103–159.

    Article  PubMed  CAS  Google Scholar 

  • Bird, A. (2007). Perceptions of epigenetics. Nature, 447, 396.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Boccia, S., et al. (2007). Polymorphisms in metabolic genes, their combination and interaction with tobacco smoke and alcohol consumption and risk of gastric cancer: a case-control study in an Italian population. BMC Cancer, 7, 206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C.-P., Morin, G. B., Harley, C. B., Shay, J. W., Lichsteiner, S., & Wright, W. E. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science, 279, 349–352.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Burhansand, W., & Weinberger, C. M. (2007). Survey and summary DNA replication stress, genome ınstability and aging. Nucleic Acids Research, 35(22), 7545–7556.

    Article  Google Scholar 

  • Caputo, J. L. (1996). Safety procedures. In Freshney, R. I., Freshney, M. G., eds., Culture of Immortalized Cells. New York, Wiley-Liss, pp. 25–51

    Google Scholar 

  • Castano, A., & Becerril, C. (2004). In vitro assessment of DNA damage after short- and long-term exposure to benzo(a)pyrene using RAPD and the RTG-2 fish cell line. Mutation Research, 552(1–2), 141–151.

    Article  PubMed  CAS  Google Scholar 

  • Cervantes, R. B., Stringer, J. R., et al. (2002). Embryonic stem cells and somatic cells differ in mutation frequency and type. Proceedings of the National Academy of Sciences of the United States of America, 99(6), 3586–3590.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, T. R. (1977). In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Experimental Cell Research, 104, 255.

    Article  PubMed  CAS  Google Scholar 

  • Dodd, I. B., Micheelsen, M. A., Sneppen, K., & Thon, G. (2007). Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell, 129, 813–822.

    Article  PubMed  CAS  Google Scholar 

  • Fenech, M. (2000). The in vitro micronucleus technique. Mutation Research, 455, 81–95.

    Article  PubMed  CAS  Google Scholar 

  • Freshney R.I. (1994). Culture of animal cells, a manual of basic technique 3rd edition.

  • Hausmann, M., Dudin, G., Aten, J. A., Heilig, R., Diaz, E., & Cremer, C. (1991). Slit scan flow cytometry of isolated chromosomes following fluorescence hybridization: an approach of online screening for specific chromosomes and chromosome translocations. Zeitschrift Für Naturforschung, 46, 433–441.

    Article  PubMed  CAS  Google Scholar 

  • Henke, J., & Henke, L. (1999). Mutation rate in human microsatellites. American Journal of Human Genetics, 64(5), 1473–1474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoboken, N. J., & Garrett, M. D. (2001). Cell cycle control and cancer current science, Vol. 81, No. 5, 10, Cell Cycle Events. Science, 246, 629–634.

    Google Scholar 

  • Hong, Y., Cervantes, R. B., et al. (2006). DNA damage response and mutagenesis in mouse embryonic stem cells. Methods in Molecular Biology, 329, 313–326.

    PubMed  CAS  Google Scholar 

  • Hong, Y., Cervantes, R. B., et al. (2007). Protecting genomic integrity in somatic cells and embryonicstem cells. Mutation Research, 614(1–2), 48–55.

    Article  PubMed  CAS  Google Scholar 

  • Hong, Y., & Stambrook, P. J. (2004). Restoration of an absent G1 arrest and protection from apoptosis in embryonic stem cells after ionizing radiation. Proceedings of the National Academy of Sciences of the United States of America, 101(40), 14443–14448.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Honma, M., Mizusawa, H., et al. (1994). Demonstration by DNA fingerprint analysis of genomic instability in mouse BALB 3T3 cells during cell transformation. Mutation Research, 304(2), 167–179.

    Article  PubMed  CAS  Google Scholar 

  • Horio, T., Miyauchi-Hashimoto, H., et al. (2007). Photobiological information obtained from XPA gene-deficient mice. Photochemistry and Photobiology, 83(1), 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Hou, S.-M., Yang, Ke., Nyberg, F., Hemminki, K., Pershagen, G., & Lambert, Bo. (1999). Hprt mutant frequency and aromatic DNA adduct level in non- smoking and smoking lung cancer patients and population controls. Carcinogenesis, 20(3), 437–444.

    Article  PubMed  CAS  Google Scholar 

  • Jones, C., & Kortenkamp, A. (2000). RAPD library fingerprinting of bacterial and human DNA: Applications in mutation detection. Teratogen. Carcinogen. Mutagen., 20, 49–63.

    Article  CAS  Google Scholar 

  • Katerji, M., & Duerksen-Hughes, P. J. (2021). DNA damage in cancer development: Special implications in viral oncogenesis. American Journal of Cancer Research, 11(8), 3956–3979.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Keshava, C., Keshava, N., et al. (1999). Genomic instability in silica- and cadmium chloride-transformed BALB/c-3T3 and tumor cell lines by random amplified polymorphic DNA analysis. Mutation Research, 425(1), 117–123.

    Article  MathSciNet  PubMed  CAS  Google Scholar 

  • Keshava, N., Zhou, G., et al. (2001). Carcinogenic potential and genomic instability of beryllium sulphate in BALB/c-3T3 cells. Molecular and Cellular Biochemistry, 222(1–2), 69–76.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch-Volders, M., Elhajouji, A., Cundari, E., & Van Hummelen, P. (1997). The in vitro micronucleustest: A multi-endpoint assay to detect simultaneously mitotic delay, apoptosis, chromosome breakage, chromosome loss andnon-disjunction. Mutation Research, 392, 19–30.

    Article  PubMed  CAS  Google Scholar 

  • Klaude, M., Eriksson, S., Nygren, J., & Ahnstrom, G. (1996). The comet assay: Mechanisms and technical considerations. Mutation Research, 363(2), 89–96.

    Article  PubMed  Google Scholar 

  • Kondrashov, A. S., & Crow, J. F. (1993). A molecular approach to estimating the human deleterious mutation rate. Human Mutation, 2(3), 229–234.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. C., Yang, V. C., et al. (2007). Use of RAPD to detect sodium arsenite-induced DNA damage in human lymphoblastoid cells. Toxicology, 239(1–2), 108–115.

    Article  PubMed  CAS  Google Scholar 

  • Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature, 396, 643–649.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Lery, X., LaRue, B., et al. (2003). Characterization and authentication of insect cell lines using RAPD markers. Insect Biochemistry and Molecular Biology, 33(10), 1035–1041.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Yan, J., & Kirschner, M. W. (2024). Cell size homeostasis is tightly controlled throughout the cell cycle. PLoS Biology, 22(1), e3002453. https://doi.org/10.1371/journal.pbio.3002453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lloyd, D. C. (1984). An overview of radiation dosimetry by conventional cytogenetic methods. In W. G. Eisert & M. L. Mendelsohn (Eds.), Biological dosimetry, cytometric approaches to mammalian systems (pp. 3–14). Springer-Verlag.

    Google Scholar 

  • Markowitz, S., et al. (1995). Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science, 268, 1336–1338.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Masters, J. R. (2002). HeLa cells 50 years on: The good, the bad and the ugly. Nature Reviews Cancer, 2, 315–319.

    Article  PubMed  CAS  Google Scholar 

  • Mather, J., & Barnes, D. (1998). Animal cell culture methods, volume 57, methods in cell biology. Academic Press.

    Google Scholar 

  • Mendelsohn, M. L. (1989). Potential DNA methods for measuring the human heritable mutation rate. Genome, 31(2), 860–863.

    Article  PubMed  CAS  Google Scholar 

  • Morley, A. A. (1996). The estimation of in vivo mutation rate and frequency from samples of human lymphocytes. Mutation Research, 357(1–2), 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Nachtsheim, H., Vogel, F., et al. (1960). Methods and errors in research on the mutation rate of the human gene. Zeitschrift Für Menschliche Vererbungs- Und Konstitutionslehre, 35, 320–331.

    PubMed  CAS  Google Scholar 

  • Ollins, A. R., Dobson, V. L., Dusinska, M., Kennedy, G., & Stetina, R. (1997). The comet assay: What can it really tell us? Mutation Research, 375(2), 183–193.

    Article  Google Scholar 

  • Pearson, H. (2008). Cell biology: the cellular hullabaloo. Nature, 453(7192), 150–153.

    Article  ADS  PubMed  CAS  Google Scholar 

  • Pinkel, D., Landegent, J., Collins, C., Fuscoe, J., Segraves, R., Lucas, J., & Gray, J. W. (1988). Fluorescence in situ hybridization with human chromosome-specific libraries: detection of trisomy 21 and translocations of chromosome 4. Proceedings of the National Academy of Sciences of the United States of America, 85, 9138–9142.

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Pretlow, T. G., & Pretlow, T. P. (1989). Cell separation by gradient centrifugation methods. Methods in Enzymology, 171, 462–482.

    Article  PubMed  CAS  Google Scholar 

  • Rizzino, A. (2002). Embryonic stem cells provide a powerful and versatile model system. Vitamins & Hormones, 64, 1–42.

    Article  Google Scholar 

  • Rojas, E., Lopez, M. C., & Valverde, M. (1999). Single cell gel electrophoresis: methodology and applications. Journal of Chromatography B, 722(1–2), 225–254.

    Article  CAS  Google Scholar 

  • Rosa, T., & Juan, P. (2007). Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome Orphanet. Journal of Rare Diseases, 2(1), 48.

    Google Scholar 

  • Rossi, D. J., Bryder, D., et al. (2007). Hematopoietic stem cell aging: Mechanism and consequence. Experimental Gerontology, 42(5), 385–390.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rossi, D. J., Seita, J., et al. (2007). Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle, 6(19), 2371–2376.

    Article  PubMed  CAS  Google Scholar 

  • Rothblat, G. H., Cristofalo, R., & Growth, V. J. (1972). Nutrition and metabolism of cells in culture ds eds (Vol. 1–3). Academic Press.

    Google Scholar 

  • Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K., & Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annual Review of Biochemistry, 73, 39–85.

    Article  PubMed  CAS  Google Scholar 

  • Senavirathne, G., London, J., Gardner, A., Fishel, R., & Yoder, K. E. (2023). DNA strand breaks andgaps target retroviral intasome binding and integration. Nature Communications, 14(1), 7072. https://doi.org/10.1038/s41467-023-42641-4

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharpless, N. E., & DePinho, R. A. (2007). How stem cells age and why this makes us grow old. Nature Reviews Molecular Cell Biology, 8(9), 703–713.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J. A., & Martin, L. (1973). Do cells cycle? Proceedings of the National Academy of Sciences, 70(4), 1263–1267.

    Article  ADS  CAS  Google Scholar 

  • Stambrook, P. J. (2007). An ageing question: Do embryonic stem cells protect their genomes? Mechanisms of Ageing and Development, 128(1), 31–35.

    Article  PubMed  CAS  Google Scholar 

  • Tanke, H. J., Florijn, R. J., Wiegant, J., Raap, A. K., & Vrolijk, J. (1995). CCD microscopy and image analysis of cells and chromosomes stained by fluorescence in situ hybridization. Histochemical Journal, 27, 4–14.

    Article  PubMed  CAS  Google Scholar 

  • Uzonur, I., Abasiyanik, M. F., Bostanci, B., Eyidemir, M., Ocba, N., Yanik, C., & Petek, M. (2004). Re-exploring planaria as a model organism for genotoxicity monitoring by an ’Improved Random Amplified Polymorphic DNA’ approach. Fresenius Environmental Bulletin, 13(12a), 1420–1426.

    CAS  Google Scholar 

  • Wolf, R. (2007). Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447.

  • Wood, R. D. (1996). DNA repair in eukaryotes. Annual Review of Biochemistry, 65, 135–167.

    Article  PubMed  CAS  Google Scholar 

  • Wood, R. D. (1997). Nucleotide excision repair ın mammalian cells. The Journal of Biological Chemistry, 272(38), 23465–23468.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, K., & Miki, Y. (2004). Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Science, 95(11), 866–871.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I would also like to show gratitude to my supervisor, including Ms. I. Irem Uzonur. She died of blood cancer. Her teaching style and enthusiasm for the topic made a strong impression on me and I have always carried positive memories of her classes with me.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arzu Erol.

Ethics declarations

Conflict of interest

The author has no financial or proprietary interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erol, A. Genomic instability evaluation in different cell line by random amplified polymorphic DNA-PCR analysis. GENOME INSTAB. DIS. (2024). https://doi.org/10.1007/s42764-024-00122-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42764-024-00122-y

Keywords

Navigation