Skip to main content
Log in

Regulation of Rothmund–Thomson syndrome protein RecQL4 functions in DNA replication by SIRT1-mediated deacetylation

  • Original Research Paper
  • Published:
Genome Instability & Disease Aims and scope Submit manuscript

Abstract

NAD dependent histone deacetylase SIRT1 has demonstrated involvement in the regulation of stress responses, cellular metabolism, and cell survival. SIRT1 overexpression has been demonstrated to induce G1 arrest, but its function in the cell cycle remains unclear. Here, we identified RecQL4 as a SIRT1 interacting protein through complex purification. RecQL4 is a member of the RecQ DNA helicase family involved in DNA replication, recombination, and repair. Mutations in the RECQL4 gene are responsible for Rothmund–Thomson syndrome (RTS), a severe autosomal recessive disorder causing premature aging and predisposition to cancers. RecQL4 can be acetylated by CBP at lysine 88. Transfection of wild-type RecQL4 into cells derived from an RTS patient can rescue cell proliferation, while a RecQL4 acetylation mutant severely impairs this function. We demonstrated that the acetylation of RecQL4 can regulate both DNA replication activity and the timing of replication firing by dynamically regulating its nuclear localization during the S phase. SIRT1 deacetylates RecQL4 both in vitro and vivo. The acetylation status of RecQL4 affects its loading to the chromatin during the S phase of the cell cycle, consequently affecting DNA replication initiation. Our findings provided new insights on the role of protein acetylation in regulating DNA replication initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aparicio, J. G., Viggiani, C. J., Gibson, D. G., & Aparicio, O. M. (2004). The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Molecular and Cellular Biology, 24, 4769–4780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bachrati, C. Z., & Hickson, I. D. (2003). RecQ helicases: Suppressors of tumorigenesis and premature aging. The Biochemical Journal, 374, 577–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croteau, D. L., Singh, D. K., Hoh, F. L., Lu, H., & Bohr, V. A. (2012). RECQL4 in genomic instability and aging. Trends in Genetics, 28, 624–631.

    Article  CAS  PubMed  Google Scholar 

  • Croteau, D. L., Popuri, V., Opresko, P. L., & Bohr, V. A. (2014). Human RecQ helicases in DNA repair, recombination, and replication. Annual Review of Biochemistry, 83, 519–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cvetic, C., & Walter, J. C. (2005). Eukaryotic origins of DNA replication: Could you please be more specific? Seminars in Cell & Developmental Biology, 16, 343–353.

    Article  CAS  Google Scholar 

  • Der Kaloustian, V. M., McGill, J. J., Vekemans, M., & Kopelman, H. R. (1990). Clonal lines of aneuploid cells in Rothmund Thomson syndrome. American Journal of Medical Genetics, 37, 336–339.

    Article  Google Scholar 

  • Dietschy, T., Shevelev, I., Pena-Diaz, J., Hühn, D., Kuenzle, S., Mak, R., et al. (2009). p300-mediated acetylation of the Rothmund-Thomson-syndrome gene product RECQL4 regulates its subcellular localization. Journal of Cell Science, 122, 1258–1267.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson, A. D. (2005). Shaping time: Chromatin structure and the DNA replication programme. Trends in Genetics, 21, 444–449.

    Article  CAS  PubMed  Google Scholar 

  • Duan, S. L., Han, X. R., Akbari, M., Croteau, D. L., Rasmussen, L. J., & Bohr, V. A. (2020). Interaction between RECQL4 and OGG1 promotes repair of oxidative base lesion 8-oxoG and is regulated by SIRT1 deacetylase. Nucleic Acids Research, 9, 6530–6546.

    Article  CAS  Google Scholar 

  • Fan, W., & Luo, J. (2008). RecQ4 facilitates UV light-induced DNA damage repair through interaction with nucleotide excision repair factor xeroderma pigmentosum group A (XPA). Journal of Biological Chemistry, 283, 29037–29044.

    Article  CAS  Google Scholar 

  • Fan, W., & Luo, J. (2010). SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Molecular Cell, 39, 247–258.

    Article  CAS  PubMed  Google Scholar 

  • Forsburg, S. L. (2004). Eukaryotic MCM proteins: Beyond replication initiation. Microbiology and Molecular Biology Reviews, 68, 109–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickson, I. D. (2003). RecQ helicases: Caretakers of the genome. Nature Reviews Cancer, 3, 169–178.

    Article  CAS  PubMed  Google Scholar 

  • Im, J. S., Ki, S. H., Farina, A., Jung, D. S., Hurwitz, J., & Lee, J. K. (2009). Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proceedings of the National Academy of Sciences of the United States of America, 106, 15628–15632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Im, J. S., Park, S. Y., Cho, W. H., Bae, S. H., Hurwitz, J., & Lee, J. K. (2015). RecQL4 is required for the association of Mcm10 and Ctf4 with replication origins in human cells. Cell Cycle, 14, 1001–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong, J., Juhn, K., Lee, H., Kim, S. H., Min, B. H., Lee, K. M., et al. (2007). SIRT1 promotes DNA repair activity and deacetylation of Ku70. Experimental & Molecular Medicine, 39, 8–13.

    Article  CAS  Google Scholar 

  • Kemp, M. G., Ghosh, M., Liu, G., & Leffak, M. (2005). The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells. Nucleic Acids Research, 33, 325–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitao, S., Ohsugi, I., Ichikawa, K., Goto, M., Furuichi, Y., & Shimamoto, A. (1998). Cloning of two new human helicase genes of the RecQ family: Biological significance of multiple species in higher eukaryotes. Genomics, 54, 443–452.

    Article  CAS  PubMed  Google Scholar 

  • Krude, T., Jackman, M., Pines, J., & Laskey, R. A. (1997). Cyclin/Cdk-dependent initiation of DNA replication in a human cell-free system. Cell, 88, 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Kumata, Y., Tada, S., Yamanada, Y., Tsuyama, T., Kobayashi, T., Dong, Y. P., et al. (2007). Possible involvement of RecQL4 in the repair of double-strand DNA breaks in Xenopus egg extracts. Biochimica Et Biophysica Acta, 1773, 556–564.

    Article  CAS  PubMed  Google Scholar 

  • Larizza, L., Magnani, I., & Roversi, G. (2006). Rothmund-Thomson syndrome and RECQL4 defect: Splitting and lumping. Cancer Letters, 232, 107–120.

    Article  CAS  PubMed  Google Scholar 

  • Li, K., Casta, A., Wang, R., Lozada, E., Fan, W., Kane, S., et al. (2008). Regulation of WRN protein cellular localization and enzymatic activities by SIRT1-mediated deacetylation. Journal of Biological Chemistry, 283, 7590–7598.

    Article  CAS  Google Scholar 

  • Lin, C. M., Fu, H., Martinovsky, M., Bouhassira, E., & Aladjem, M. I. (2003). Dynamic alterations of replication timing in mammalian cells. Current Biology, 13, 1019–1028.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T., Lin, Y. H., Leng, W., Jung, S. Y., Zhang, H., Deng, M., et al. (2014). A divergent role of the SIRT1-TopBP1 axis in regulating metabolic checkpoint and DNA damage checkpoint. Molecular Cell, 56, 681–695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, J., Nikolaev, A. Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., & Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell, 107, 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Machida, Y. J., Hamlin, J. L., & Dutta, A. (2005). Right place, right time, and only once: Replication initiation in metazoans. Cell, 123, 13–24.

    Article  CAS  PubMed  Google Scholar 

  • Matsuno, K., Kumano, M., Kubota, Y., Hashimoto, Y., & Takisawa, H. (2006). The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication. Molecular and Cellular Biology, 26, 4843–4852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McAinsh, A. D., Scott-Drew, S., Murray, J. A., & Jackson, S. P. (1999). DNA damage triggers disruption of telomeric silencing and Mec1p-dependent relocation of Sir3p. Current Biology, 9, 963–966.

    Article  CAS  PubMed  Google Scholar 

  • Oberdoerffer, P., Michan, S., McVay, M., Mostoslavsky, R., Vann, J., Park, S. K., et al. (2008). SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell, 135, 907–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orstavik, K. H., McFadden, N., Hagelsteen, J., Ormerod, E., & van der Hagen, C. B. (1994). Instability of lymphocyte chromosomes in a girl with Rothmund-Thomson syndrome. Journal of Medical Genetics, 31, 570–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouspenski, I. I., Van Hooser, A. A., & Brinkley, B. R. (2003). Relevance of histone acetylation and replication timing for deposition of centromeric histone CENP-A. Experimental Cell Research, 285, 175–188.

    Article  CAS  PubMed  Google Scholar 

  • Park, S. J., Lee, Y. J., Beck, B. D., & Lee, S. H. (2006). A positive involvement of RecQL4 in UV-induced S-phase arrest. DNA and Cell Biology, 25, 696–703.

    Article  CAS  PubMed  Google Scholar 

  • Petkovic, M., Dietschy, T., Freire, R., Jiao, R., & Stagljar, I. (2005). The human Rothmund-Thomson syndrome gene product, RECQL4, localizes to distinct nuclear foci that coincide with proteins involved in the maintenance of genome stability. Journal of Cell Science, 118, 4261–4269.

    Article  CAS  PubMed  Google Scholar 

  • Sangrithi, M. N., Bernal, J. A., Madine, M., Philpott, A., Lee, J., Dunphy, W. G., et al. (2005). Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome. Cell, 121, 887–898.

    Article  CAS  PubMed  Google Scholar 

  • Shamanna, R. A., Singh, D. K., Lu, H., Mirey, G., Keijzers, G., Salles, B., et al. (2014). RECQ helicase RECQL4 participates in non-homologous end joining and interacts with the Ku complex. Carcinogenesis, 35, 2415–2424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeber, K., Mills, A. D., Kubota, Y., Krude, T., Romanowski, P., Marheineke, K., et al. (1998). Cdc6 protein causes premature entry into S phase in a mammalian cell-free system. EMBO Journal, 17, 7219–7229.

    Article  CAS  Google Scholar 

  • Takeda, D. Y., & Dutta, A. (2005). DNA replication and progression through S phase. Oncogene, 24, 2827–2843.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, S., Komeda, Y., Umemori, T., Kubota, Y., Takisawa, H., & Araki, H. (2013). Effi cient initiation of DNA replication in eukaryotes requires Dpb11/TopBP1-GINS interaction. Molecular and Cellular Biology, 33, 2614–2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thangavel, S., Mendoza-Maldonado, R., Tissino, E., Sidorova, J. M., Yin, J., Wang, W., et al. (2010). Human RECQ1 and RECQ4 helicases play distinct roles in DNA replication initiation. Molecular and Cellular Biology, 30, 1382–1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vennos, E. M., & James, W. D. (1995). Rothmund-Thomson syndrome. Dermatologic Clinics, 13, 143–150.

    Article  CAS  PubMed  Google Scholar 

  • Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B. J., & Grunstein, M. (2002). Histone acetylation regulates the time of replication origin firing. Molecular Cell, 10, 1223–1233.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., & Elledge, S. J. (1999). DRC1, DNA replication and checkpoint protein 1, functions with DPB11 to control DNA replication and the S-phase checkpoint in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 96, 3824–3829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, R., Cherukuri, P., & Luo, J. (2005). Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation. Journal of Biological Chemistry, 280, 11528–11534.

    Article  CAS  Google Scholar 

  • Wang, R. H., Sengupta, K., Li, C., Kim, H. S., Cao, L., Xiao, C., et al. (2008). Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell, 14, 312–323.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R. H., Lahusen, T. J., Chen, Q., Xu, X., Jenkins, L. M., Leo, E., et al. (2014). SIRT1 deacetylates TopBP1 and modulates intra-S-phase checkpoint and DNA replication origin firing. International Journal of Biological Sciences, 10, 1193–1202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner, S. R., Prahalad, A. K., Yang, J., & Hock, J. M. (2006). RECQL4-deficient cells are hypersensitive to oxidative stress/damage: Insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome. Biochemical and Biophysical Research Communications, 345, 403–409.

    Article  CAS  PubMed  Google Scholar 

  • Woo, L. L., Futami, K., Shimamoto, A., Furuichi, Y., & Frank, K. M. (2006). The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Experimental Cell Research, 312, 3443–3457.

    Article  CAS  PubMed  Google Scholar 

  • Wu, J., Capp, C., Feng, L., & Hsieh, T. S. (2008). Drosophila homologue of the Rothmund-Thomson syndrome gene: Essential function in DNA replication during development. Developmental Biology, 323, 130–142.

    Article  CAS  PubMed  Google Scholar 

  • Xu, X., Rochette, P. J., Feyissa, E. A., Su, T. V., & Liu, Y. (2009a). MCM10 mediates RECQ4 association with MCM2-7 helicase complex during DNA replication. EMBO Journal, 28, 3005–3014.

    Article  CAS  Google Scholar 

  • Xu, Y., Lei, Z., Huang, H., Dui, W., Liang, X., Ma, J., et al. (2009b). dRecQ4 is required for DNA synthesis and essential for cell proliferation in Drosophila. PLoS ONE, 4, 6107.

    Article  CAS  Google Scholar 

  • Yin, J., Kwon, Y. T., Varshavsky, A., & Wang, W. (2004). RECQL4, mutated in the Rothmund-Thomson and RAPADILINO syndromes, interacts with ubiquitin ligases UBR1 and UBR2 of the N-end rule pathway. Human Molecular Genetics, 13, 2421–2430.

    Article  CAS  PubMed  Google Scholar 

  • Ying, K. L., Oizumi, J., & Curry, C. J. R. (1990). Rothmund-Thomson syndrome associated with trisomy-8 mosaicism. Journal of Medical Genetics, 27, 258–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, Z., Zhang, X., Sengupta, N., Lane, W. S., & Seto, E. (2007). SIRT1 regulates the function of the Nijmegen breakage syndrome protein. Molecular Cell, 27, 149–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, J., Chau, C. M., Deng, Z., Shiekhattar, R., Spindler, M. P., Schepers, A., et al. (2005). Cell cycle regulation of chromatin at an origin of DNA replication. EMBO Journal, 24, 1406–1417.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We specially thank Drs. D. Altieri, J. Chen, and S. Cantor for critical discussion on the manuscript, and other members of J. Luo’s lab for comments. We thank the Nucleic Acid facility of UMass Medical School for sequencing the plasmids.

Funding

This work was supported by National Natural Science Foundation of China (No. 81270427 to J. Luo, No. 81471405 to J. Luo), and Major State Basic Research Development Program of China (973 Program, No. 2013CB530801 to J. Luo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyuan Luo.

Ethics declarations

Conflict of interest

The authors declare no completing financial interests.

Ethics approval

Not applicable.

Consent for publication

All authors have approved the final submission and consented to publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 1047 kb)

Supplementary file2 (TIF 4989 kb)

Supplementary file3 (TIF 4328 kb)

42764_2021_48_MOESM4_ESM.tif

S4. The elevated acetylation of RecQL4 after HU treatment is mediated by CBP. The RecQL4-CBP interaction becomes stronger post HU treatment (a). b, The early or late S phase by the time post releasing from G1 arrest was confirmed using Cyclin E1 (TIF 4100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Fan, W., Wang, R. et al. Regulation of Rothmund–Thomson syndrome protein RecQL4 functions in DNA replication by SIRT1-mediated deacetylation. GENOME INSTAB. DIS. 2, 240–252 (2021). https://doi.org/10.1007/s42764-021-00048-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42764-021-00048-9

Keywords

Navigation