Skip to main content

Advertisement

Log in

Deciphering p53 dynamics and cell fate in DNA damage response using mathematical modeling

  • Review Article
  • Published:
Genome Instability & Disease Aims and scope Submit manuscript

Abstract

The tumor suppressor p53 is activated in response to cellular stresses. The transcription factor p53 can activate the expression of numerous genes leading to cell cycle arrest, senescence or apoptosis. The p53 network exhibits complex stimulus-dependent dynamics under stressed and non-stressed conditions. Mathematical models contribute significantly to enhanced understanding of p53 network topology. In this review, we discuss the evolution of kinetic p53 modeling, multiple mechanisms for distinct p53 dynamics, and how the temporal p53 dynamics determine cell fate over the last 2 decades. The Information encoding and decoding strategies through p53 signaling network enable cells to undergo appropriate cellular outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abou-Jaoude, W., Chaves, M., & Gouze, J. L. (2011). A theoretical exploration of birhythmicity in the p53-Mdm2 network. PLoS ONE, 6, e17075.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Allen, M. A., Andrysik, Z., Dengler, V. L., Mellert, H. S., Guarnieri, A., Freeman, J. A., et al. (2014). Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms. Elife, 3, e02200.

    PubMed  PubMed Central  Google Scholar 

  • Bakkenist, C. J., & Kastan, M. B. (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 421, 499–506.

    PubMed  CAS  Google Scholar 

  • Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C. W., Chessa, L., et al. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science, 281, 1674–1677.

    PubMed  CAS  Google Scholar 

  • Batchelor, E., & Loewer, A. (2017). Recent progress and open challenges in modeling p53 dynamics in single cells. Current Opinion on System Biology, 3, 54–59.

    Google Scholar 

  • Batchelor, E., Loewer, A., Mock, C., & Lahav, G. (2011). Stimulus-dependent dynamics of p53 in single cells. Molecular System Biology, 7, 488.

    Google Scholar 

  • Batchelor, E., Mock, C. S., Bhan, I., Loewer, A., & Lahav, G. (2008). Recurrent initiation: A mechanism for triggering p53 pulses in response to DNA damage. Molecular Cell, 30, 277–289.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bose, I., & Ghosh, B. (2007). The p53-MDM2 network: From oscillations to apoptosis. Journal of Biosciences, 32, 991–997.

    PubMed  CAS  Google Scholar 

  • Bottani, S., & Grammaticos, B. (2007). Analysis of a minimal model for p53 oscillations. Journal of Theoretical Biology, 249, 235–245.

    PubMed  CAS  Google Scholar 

  • Brooks, C. L., & Gu, W. (2006). p53 ubiquitination: Mdm2 and beyond. Molecular Cell, 21, 307–315.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cai, X., & Yuan, Z. M. (2009). Stochastic modeling and simulation of the p53-MDM2/MDMX loop. Journal of Computational Biology, 16, 917–933.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, X., Chen, J., Gan, S., Guan, H., Zhou, Y., Ouyang, Q., et al. (2013). DNA damage strength modulates a bimodal switch of p53 dynamics for cell-fate control. BMC Biology, 11, 73.

    PubMed  PubMed Central  Google Scholar 

  • Chen, J., Yue, H., & Ouyang, Q. (2014). Correlation between oncogenic mutations and parameter sensitivity of the apoptosis pathway model. PLoS Computational Biology, 10, e1003451.

    PubMed  PubMed Central  Google Scholar 

  • Cheng, Q., Chen, L., Li, Z., Lane, W. S., & Chen, J. (2009). ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO Journal, 28, 3857–3867.

    CAS  Google Scholar 

  • Cheng, Z., Ke, Y., Ding, X., Wang, F., Wang, H., Wang, W., et al. (2008). Functional characterization of TIP60 sumoylation in UV-irradiated DNA damage response. Oncogene, 27, 931–941.

    PubMed  CAS  Google Scholar 

  • Chipuk, J. E., Bouchier-Hayes, L., Kuwana, T., Newmeyer, D. D., & Green, D. R. (2005). PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science, 309, 1732–1735.

    PubMed  CAS  Google Scholar 

  • Choi, M., Shi, J., Jung, S. H., Chen, X., & Cho, K. H. (2012). Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to DNA damage. Scientific Signal, 5, ra83.

    Google Scholar 

  • Chong, K. H., Samarasinghe, S., & Kulasiri, D. (2015). Mathematical modelling of p53 basal dynamics and DNA damage response. Mathematical Biosciences, 259, 27–42.

    PubMed  CAS  Google Scholar 

  • Ciliberto, A., Novak, B., & Tyson, J. J. (2005). Steady states and oscillations in the p53/Mdm2 network. Cell Cycle, 4, 488–493.

    PubMed  CAS  Google Scholar 

  • De, S., Campbell, C., Venkitaraman, A. R., & Esposito, A. (2020). Pulsatile MAPK signaling modulates p53 activity to control cell fate decisions at the g2 checkpoint for DNA damage. Cell Reports, 30(2083–2093), e2085.

    Google Scholar 

  • Elias, J. (2017). Positive effect of Mdm2 on p53 expression explains excitability of p53 in response to DNA damage. Journal of Theoretical Biology, 418, 94–104.

    PubMed  CAS  Google Scholar 

  • Finzel, A., Grybowski, A., Strasen, J., Cristiano, E., & Loewer, A. (2016). Hyperactivation of ATM upon DNA-PKcs inhibition modulates p53 dynamics and cell fate in response to DNA damage. Molecular Biology of the Cell, 27, 2360–2367.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fischer, N. W., Prodeus, A., Malkin, D., & Gariepy, J. (2016). p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle, 15, 3210–3219.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gajjar, M., Candeias, M. M., Malbert-Colas, L., Mazars, A., Fujita, J., Olivares-Illana, V., et al. (2012). The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell, 21, 25–35.

    PubMed  CAS  Google Scholar 

  • Gao, Y., Ferguson, D. O., Xie, W., Manis, J. P., Sekiguchi, J., Frank, K. M., et al. (2000). Interplay of p53 and DNA-repair protein XRCC4 in tumorigenesis, genomic stability and development. Nature, 404, 897–900.

    PubMed  CAS  Google Scholar 

  • Gao, C., Liu, H., & Yan, F. (2020). Dynamic behavior of p53 driven by delay and a microrna-34a-mediated feedback loop. International Journal of Molecular Science, 21, 1271.

    CAS  Google Scholar 

  • Ge, H., & Qian, M. (2009). Boolean network approach to negative feedback loops of the p53 pathways: Synchronized dynamics and stochastic limit cycles. Journal of Computational Biology, 16, 119–132.

    PubMed  CAS  Google Scholar 

  • Geva-Zatorsky, N., Dekel, E., Batchelor, E., Lahav, G., & Alon, U. (2010). Fourier analysis and systems identification of the p53 feedback loop. Proceedings of National Academy of Science United States of America, 107, 13550–13555.

    CAS  Google Scholar 

  • Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E., et al. (2006). Oscillations and variability in the p53 system. Molecular System Biology, 2(2006), 0033.

    Google Scholar 

  • Gordon, K. E., Van Leeuwen, I., Lain, S., & Chaplain, M. A. J. J. M. M. O. N. P. (2009). Spatio-temporal modelling of the p53–mdm2 oscillatory system. Journal of Theoretical Biology, 4, 97–116.

    Google Scholar 

  • Green, D. R., & Kroemer, G. (2009). Cytoplasmic functions of the tumour suppressor p53. Nature, 458, 1127–1130.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hafner, A., Bulyk, M. L., Jambhekar, A., & Lahav, G. (2019). The multiple mechanisms that regulate p53 activity and cell fate. Nature Reviews Molecular Cell Biology, 20, 199–210.

    PubMed  CAS  Google Scholar 

  • Hafner, A., Stewart-Ornstein, J., Purvis, J. E., Forrester, W. C., Bulyk, M. L., & Lahav, G. (2017). p53 pulses lead to distinct patterns of gene expression albeit similar DNA-binding dynamics. Nature Structural and Molecular Biology, 24, 840–847.

    PubMed  CAS  Google Scholar 

  • Hanson, R. L., Porter, J. R., & Batchelor, E. (2019). Protein stability of p53 targets determines their temporal expression dynamics in response to p53 pulsing. Journal of Cell Biology, 218, 1282–1297.

    CAS  Google Scholar 

  • Harris, S. L., & Levine, A. J. (2005). The p53 pathway: Positive and negative feedback loops. Oncogene, 24, 2899–2908.

    PubMed  CAS  Google Scholar 

  • Harton, M. D., Koh, W. S., Bunker, A. D., Singh, A., & Batchelor, E. (2019). p53 pulse modulation differentially regulates target gene promoters to regulate cell fate decisions. Molecular System Biology, 15, e8685.

    CAS  Google Scholar 

  • Hemann, M. T., & Lowe, S. W. (2006). The p53-Bcl-2 connection. Cell Death and Differentiation, 13, 1256–1259.

    PubMed  CAS  Google Scholar 

  • Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature, 407, 770–776.

    PubMed  CAS  Google Scholar 

  • Hu, W., Feng, Z., Ma, L., Wagner, J., Rice, J. J., Stolovitzky, G., et al. (2007). A single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells. Cancer Research, 67, 2757–2765.

    PubMed  CAS  Google Scholar 

  • Hunziker, A., Jensen, M. H., & Krishna, S. (2010). Stress-specific response of the p53-Mdm2 feedback loop. BMC Systems Biology, 4, 94.

    PubMed  PubMed Central  Google Scholar 

  • Ichijima, Y., Sakasai, R., Okita, N., Asahina, K., Mizutani, S., & Teraoka, H. (2005). Phosphorylation of histone H2AX at M phase in human cells without DNA damage response. Biochemical and Biophysical Research Communications, 336, 807–812.

    PubMed  CAS  Google Scholar 

  • Iwamoto, K., Hamada, H., Eguchi, Y., & Okamoto, M. (2011). Mathematical modeling of cell cycle regulation in response to DNA damage: Exploring mechanisms of cell-fate determination. Biosystems, 103, 384–391.

    PubMed  CAS  Google Scholar 

  • Jolma, I. W., Ni, X. Y., Rensing, L., & Ruoff, P. J. B. J. (2010). Harmonic oscillations in homeostatic controllers: Dynamics of the p53 regulatory system. Biophysical Journal, 98, 743–752.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jones, S. N., Roe, A. E., Donehower, L. A., & Bradley, A. (1995). Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature, 378, 206–208.

    PubMed  CAS  Google Scholar 

  • Karanam, K., Kafri, R., Loewer, A., & Lahav, G. (2012). Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Molecular Cell, 47, 320–329.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, J. K., & Jackson, T. L. J. P. O. (2013). Mechanisms that enhance sustainability of p53 pulses. PLoS One, 8, e65242.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Krenning, L., van den Berg, J., & Medema, R. H. (2019). Life or death after a break: What determines the choice? Molecular Cell, 76, 346–358.

    PubMed  CAS  Google Scholar 

  • Kultz, D. (2005). Molecular and evolutionary basis of the cellular stress response. Annual Review of Physiology, 67, 225–257.

    PubMed  Google Scholar 

  • Lahav, G., Rosenfeld, N., Sigal, A., Geva-Zatorsky, N., Levine, A. J., Elowitz, M. B., et al. (2004). Dynamics of the p53-Mdm2 feedback loop in individual cells. Nature Genetics, 36, 147–150.

    PubMed  CAS  Google Scholar 

  • Lane, D. P. (1992). Cancer. p53, guardian of the genome. Nature, 358, 15–16.

    PubMed  CAS  Google Scholar 

  • Lecona, E., & Fernandez-Capetillo, O. (2018). Targeting ATR in cancer. Nature Reviews Cancer, 18, 586–595.

    PubMed  CAS  Google Scholar 

  • Lev Bar-Or, R., Maya, R., Segel, L. A., Alon, U., Levine, A. J., & Oren, M. (2000). Generation of oscillations by the p53-Mdm2 feedback loop: A theoretical and experimental study. Proceedings of National Academy of Science United States of America, 97, 11250–11255.

    CAS  Google Scholar 

  • Li, M., Brooks, C. L., Wu-Baer, F., Chen, D., Baer, R., & Gu, W. (2003). Mono-versus polyubiquitination: Differential control of p53 fate by Mdm2. Science, 302, 1972–1975.

    PubMed  CAS  Google Scholar 

  • Lin, G., Ao, B., Chen, J., Wang, W., & Di, Z. (2014). Modeling and controlling the two-phase dynamics of the p53 network: A Boolean network approach. New Journal of Physics, 16, 125010.

    Google Scholar 

  • Liu, B., Bhatt, D., Oltvai, Z. N., Greenberger, J. S., & Bahar, I. (2014). Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation, and polypharmacological strategies. Science Reports, 4, 6245.

    CAS  Google Scholar 

  • Liu, Q., & He, Z. (2016). A novel boolean network for analyzing the p53 gene regulatory network. Current Bioinformatics, 11, 13–21.

    Google Scholar 

  • Loewer, A., Batchelor, E., Gaglia, G., & Lahav, G. (2010). Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells. Cell, 142, 89–100.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Loewer, A., Karanam, K., Mock, C., & Lahav, G. (2013). The p53 response in single cells is linearly correlated to the number of DNA breaks without a distinct threshold. BMC Biology, 11, 114.

    PubMed  PubMed Central  Google Scholar 

  • Lowndes, N. F. (2001). DNA-damage signaling and apoptosis. Genome Biology, 2, REPORTS4028.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, A., & Dai, X. J. C. C. (2018). The relationship between DNA single-stranded damage response and double-stranded damage response. Cell Cycle, 17, 73–79.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ma, A., & Dai, X. (2019). Exploring the influence of parameters on the p53 response when single-stranded breaks and double-stranded breaks coexist. Interdisciplinary Sciences: Computational Life Sciences, 11, 679–690.

    CAS  Google Scholar 

  • Ma, L., Wagner, J., Rice, J. J., Hu, W., Levine, A. J., & Stolovitzky, G. A. (2005). A plausible model for the digital response of p53 to DNA damage. Proceedings of National Academy of Science United States of America, 102, 14266–14271.

    CAS  Google Scholar 

  • Malbert-Colas, L., Ponnuswamy, A., Olivares-Illana, V., Tournillon, A. S., Naski, N., & Fahraeus, R. (2014). HDMX folds the nascent p53 mRNA following activation by the ATM kinase. Molecular Cell, 54, 500–511.

    PubMed  CAS  Google Scholar 

  • Marchenko, N. D., Wolff, S., Erster, S., Becker, K., & Moll, U. M. (2007). Monoubiquitylation promotes mitochondrial p53 translocation. EMBO Journal, 26, 923–934.

    CAS  Google Scholar 

  • Monk, N. A. (2003). Oscillatory expression of Hes1, p53, and NF-kappaB driven by transcriptional time delays. Current Biology, 13, 1409–1413.

    PubMed  CAS  Google Scholar 

  • Monke, G., Cristiano, E., Finzel, A., Friedrich, D., Herzel, H., Falcke, M., et al. (2017). Excitability in the p53 network mediates robust signaling with tunable activation thresholds in single cells. Science Reports, 7, 46571.

    Google Scholar 

  • Moore, R., Ooi, H. K., Kang, T., Bleris, L., & Ma, L. (2015). MiR-192-mediated positive feedback loop controls the robustness of stress-induced p53 oscillations in breast cancer cells. PLoS Computational Biology, 11, e1004653.

    PubMed  PubMed Central  Google Scholar 

  • Mouri, K., Nacher, J. C., & Akutsu, T. (2009). A mathematical model for the detection mechanism of DNA double-strand breaks depending on autophosphorylation of ATM. PLoS One, 4, e5131.

    PubMed  PubMed Central  Google Scholar 

  • Muller, P. A., & Vousden, K. H. (2013). p53 mutations in cancer. Nature Cell Biology, 15, 2–8.

    PubMed  CAS  Google Scholar 

  • Murray-Zmijewski, F., Slee, E. A., & Lu, X. (2008). A complex barcode underlies the heterogeneous response of p53 to stress. Nature Reviews Molecular Cell Biology, 9, 702–712.

    PubMed  CAS  Google Scholar 

  • Nakano, K., & Vousden, K. H. (2001). PUMA, a novel proapoptotic gene, is induced by p53. Molecular Cell, 7, 683–694.

    PubMed  CAS  Google Scholar 

  • Park, J. H., Yang, S. W., Park, J. M., Ka, S. H., Kim, J. H., Kong, Y. Y., et al. (2016). Positive feedback regulation of p53 transactivity by DNA damage-induced ISG15 modification. Nature Communications, 7, 12513.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Porter, J. R., Fisher, B. E., & Batchelor, E. (2016). p53 pulses diversify target gene expression dynamics in an mRNA half-life-dependent manner and delineate co-regulated target gene subnetworks. Cell System, 2, 272–282.

    CAS  Google Scholar 

  • Proctor, C. J., & Gray, D. A. (2008). Explaining oscillations and variability in the p53-Mdm2 system. BMC Systems Biology, 2, 75.

    PubMed  PubMed Central  Google Scholar 

  • Pu, T., Zhang, X. P., Liu, F., & Wang, W. (2010). Coordination of the nuclear and cytoplasmic activities of p53 in response to DNA damage. Biophysical Journal, 99, 1696–1705.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Purvis, J. E., Karhohs, K. W., Mock, C., Batchelor, E., Loewer, A., & Lahav, G. (2012). p53 dynamics control cell fate. Science, 336, 1440–1444.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Puszynski, K., Hat, B., & Lipniacki, T. (2008). Oscillations and bistability in the stochastic model of p53 regulation. Journal of Theoretical Biology, 254, 452–465.

    PubMed  CAS  Google Scholar 

  • Ramalingam, S., Honkanen, P., Young, L., Shimura, T., Austin, J., Steeg, P. S., et al. (2007). Quantitative assessment of the p53-Mdm2 feedback loop using protein lysate microarrays. Cancer Research, 67, 6247–6252.

    PubMed  CAS  Google Scholar 

  • Saldivar, J. C., Cortez, D., & Cimprich, K. A. (2017). The essential kinase ATR: Ensuring faithful duplication of a challenging genome. Nature Reviews Molecular Cell Biology, 18, 622–636.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Serrano, M. A., Li, Z., Dangeti, M., Musich, P. R., Patrick, S., Roginskaya, M., et al. (2013). DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair. Oncogene, 32, 2452–2462.

    PubMed  CAS  Google Scholar 

  • Shikazono, N., Noguchi, M., Fujii, K., Urushibara, A., & Yokoya, A. (2009). The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation. Journal of Radiated Research, 50, 27–36.

    CAS  Google Scholar 

  • Shimada, M., & Nakanishi, M. (2013). Response to DNA damage: Why do we need to focus on protein phosphatases? Frontiers Oncology, 3, 8.

    CAS  Google Scholar 

  • So, A., Le Guen, T., Lopez, B. S., & Guirouilh-Barbat, J. (2017). Genomic rearrangements induced by unscheduled DNA double strand breaks in somatic mammalian cells. FEBS Journal, 284, 2324–2344.

    CAS  Google Scholar 

  • Stewart-Ornstein, J., Cheng, H. W. J., & Lahav, G. (2017). Conservation and divergence of p53 oscillation dynamics across species. Cell System, 5(410–417), e414.

    Google Scholar 

  • Stewart-Ornstein, J., & Lahav, G. (2017). p53 dynamics in response to DNA damage vary across cell lines and are shaped by efficiency of DNA repair and activity of the kinase ATM. Science Signaling, 10, eaah6671.

    PubMed  PubMed Central  Google Scholar 

  • Su, T. T. (2006). Cellular responses to DNA damage: One signal, multiple choices. Annual Review of Genetics, 40, 187–208.

    PubMed  CAS  Google Scholar 

  • Sun, T., Chen, C., Wu, Y., Zhang, S., Cui, J., & Shen, P. (2009). Modeling the role of p53 pulses in DNA damage- induced cell death decision. BMC Bioinformatics, 10, 190.

    PubMed  PubMed Central  Google Scholar 

  • Sun, T., & Cui, J. (2014). A plausible model for bimodal p53 switch in DNA damage response. FEBS Letters, 588, 815–821.

    PubMed  CAS  Google Scholar 

  • Sun, T., & Cui, J. (2015). Dynamics of P53 in response to DNA damage: Mathematical modeling and perspective. Progress in Biophysics and Molecular Biology, 119, 175–182.

    PubMed  CAS  Google Scholar 

  • Sun, T., Li, X., & Shen, P. (2017). Modeling amplified p53 responses under DNA-PK inhibition in DNA damage response. Oncotarget, 8, 17105–17114.

    PubMed  PubMed Central  Google Scholar 

  • Sun, T., & Mu, D. (2020). Multi-scale modeling identifies the role of p53-Gys2 negative feedback in cellular homeostasis. Mathematical Biosciences and Engineering, 17, 3260–3273.

    PubMed  Google Scholar 

  • Sun, T., Mu, D., & Cui, J. (2018). Mathematical model identifies effective P53 accumulation with target gene binding affinity in DNA damage response for cell fate decision. Cell Cycle, 17, 2716–2730.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, T., Yang, W., Liu, J., & Shen, P. (2011). Modeling the basal dynamics of P53 system. PLoS One, 6, e27882.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sun, T., Yuan, R., Xu, W., Zhu, F., & Shen, P. (2010). Exploring a minimal two-component p53 model. Physical Biology, 7, 036008.

    PubMed  Google Scholar 

  • Tang, Q., Su, Z., Gu, W., & Rustgi, A. K. (2020). Mutant p53 on the path to metastasis. Trends Cancer, 6, 62–73.

    PubMed  Google Scholar 

  • Tian, X. J., Liu, F., Zhang, X. P., Li, J., & Wang, W. (2012). A two-step mechanism for cell fate decision by coordination of nuclear and mitochondrial p53 activities. PLoS ONE, 7, e38164.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tiana, G., Jensen, M. H., & Sneppen, K. J. E. P. J. B. (2002). Time delay as a key to apoptosis induction in the p53 network. The European Physical Journal B-Condensed Matter and Complex, 29, 135–140.

    CAS  Google Scholar 

  • Tibbetts, R. S., Brumbaugh, K. M., Williams, J. M., Sarkaria, J. N., Cliby, W. A., Shieh, S. Y., et al. (1999). A role for ATR in the DNA damage-induced phosphorylation of p53. Genes and Development, 13, 152–157.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Toettcher, J. E., Loewer, A., Ostheimer, G. J., Yaffe, M. B., Tidor, B., & Lahav, G. (2009). Distinct mechanisms act in concert to mediate cell cycle arrest. Proceedings of National Academy of Science United States of America, 106, 785–790.

    CAS  Google Scholar 

  • Tyson, J. (2006). Another turn for p53. Molecular Systems Biology, 2(2006), 0032.

    PubMed  Google Scholar 

  • Tyson, J. J., Chen, K. C., & Novak, B. (2003). Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the cell. Current Opinion in Cell Biology, 15, 221–231.

    PubMed  CAS  Google Scholar 

  • Unsal-Kacmaz, K., Makhov, A. M., Griffith, J. D., & Sancar, A. (2002). Preferential binding of ATR protein to UV-damaged DNA. Proceedings of National Academy of Science United States of America, 99, 6673–6678.

    CAS  Google Scholar 

  • Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science, 303, 844–848.

    PubMed  CAS  Google Scholar 

  • Vilenchik, M. M., & Knudson, A. G. (2003). Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer. Proceedings of the National academy of Sciences of the United States of America, 100, 12871–12876.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner, J., Ma, L., Rice, J. J., Hu, W., Levine, A. J., & Stolovitzky, G. A. (2005). p53-Mdm2 loop controlled by a balance of its feedback strength and effective dampening using ATM and delayed feedback. Systematic Biology (Stevenage), 152, 109–118.

    CAS  Google Scholar 

  • Wang, P., Bao, H., Zhang, X. P., Liu, F., & Wang, W. (2019a). Regulation of Tip60-dependent p53 acetylation in cell fate decision. FEBS Letters, 593, 13–22.

    PubMed  CAS  Google Scholar 

  • Wang, P., Guan, D., Zhang, X. P., Liu, F., & Wang, W. (2019b). Modeling the regulation of p53 activation by HIF-1 upon hypoxia. FEBS Letters, 593, 2596–2611.

    PubMed  CAS  Google Scholar 

  • Wang, L. S., Li, N. X., Chen, J. J., Zhang, X. P., Liu, F., & Wang, W. (2018). Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks. Physical Review E, 97, 042412.

    PubMed  CAS  Google Scholar 

  • Wee, K. B., Surana, U., & Aguda, B. D. (2009). Oscillations of the p53-Akt network: Implications on cell survival and death. PLoS One, 4, e4407.

    PubMed  PubMed Central  Google Scholar 

  • Weinberg, R. L., Veprintsev, D. B., Bycroft, M., & Fersht, A. R. (2005). Comparative binding of p53 to its promoter and DNA recognition elements. Journal of Molecular Biology, 348, 589–596.

    PubMed  CAS  Google Scholar 

  • Willis, S. N., & Adams, J. M. (2005). Life in the balance: How BH3-only proteins induce apoptosis. Current Opinion in Cell Biology, 17, 617–625.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wu, X., Bayle, J. H., Olson, D., & Levine, A. J. (1993). The p53-mdm-2 autoregulatory feedback loop. Genes and Development, 7, 1126–1132.

    PubMed  CAS  Google Scholar 

  • Wu, W., Sun, W., & Sun, T. (2016). Modeling the heterogeneity of p53 dynamics in DNA damage response. Journal of Bioinformatics and Computational Biology, 14, 1650001.

    PubMed  CAS  Google Scholar 

  • Wu, M., Ye, H., Tang, Z., Shao, C., Lu, G., Chen, B., et al. (2017). p53 dynamics orchestrates with binding affinity to target genes for cell fate decision. Cell Death and Disease, 8, e3130.

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xu, L., Chen, Y., Song, Q., Xu, D., Wang, Y., & Ma, D. (2009). PDCD5 interacts with Tip60 and functions as a cooperator in acetyltransferase activity and DNA damage-induced apoptosis. Neoplasia, 11, 345–354.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, R., Huang, B., Zhu, Y., Li, Y., Liu, F., & Shi, J. (2018). Cell type-dependent bimodal p53 activation engenders a dynamic mechanism of chemoresistance. Scientific Advances, 4, eaat5077.

    CAS  Google Scholar 

  • Zhang, T., Brazhnik, P., & Tyson, J. J. (2007). Exploring mechanisms of the DNA-damage response: p53 pulses and their possible relevance to apoptosis. Cell Cycle, 6, 85–94.

    PubMed  Google Scholar 

  • Zhang, T., Brazhnik, P., & Tyson, J. J. (2009a). Computational analysis of dynamical responses to the intrinsic pathway of programmed cell death. Biophysical Journal, 97, 415–434.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, X., Liu, F., Cheng, Z., & Wang, W. (2009b). Cell fate decision mediated by p53 pulses. Proceedings of National Academy of Science United States of America, 106, 12245–12250.

    CAS  Google Scholar 

  • Zhang, X., Liu, F., & Wang, W. (2010). Coordination between cell cycle progression and cell fate decision by the p53 and E2F1 pathways in response to DNA damage. Journal of Biological Chemistry, 285, 31571–31580.

    CAS  Google Scholar 

  • Zhang, X., Liu, F., & Wang, W. (2011). Two-phase dynamics of p53 in the DNA damage response. Proceedings of National Academy of Science United States of America, 108, 8990–8995.

    CAS  Google Scholar 

  • Zhang, X., Liu, F., & Wang, W. (2012). Regulation of the DNA damage response by p53 cofactors. Biophysical Journal, 102, 2251–2260.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, X., Liu, F., & Wang, W. (2014). Interplay between Mdm2 and HIPK2 in the DNA damage response. Journal of The Royal Society Interface, 11, 20140319.

    PubMed Central  Google Scholar 

  • Zhou, Y., Lee, J. H., Jiang, W., Crowe, J. L., Zha, S., & Paull, T. T. (2017). Regulation of the DNA damage response by DNA-PKcs inhibitory phosphorylation of ATM. Molecular Cell, 65, 91–104.

    PubMed  CAS  Google Scholar 

  • Zhou, C. H., Zhang, X. P., Liu, F., & Wang, W. (2014). Involvement of miR-605 and miR-34a in the DNA damage response promotes apoptosis induction. Biophysical Journal, 106, 1792–1800.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhuge, C., Chang, Y., Li, Y., Chen, Y., & Lei, J. (2011). PDCD5-regulated cell fate decision after ultraviolet-irradiation-induced DNA damage. Biophysical Journal, 101, 2582–2591.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhuge, C., Sun, X., Chen, Y., & Lei, J. (2016). PDCD5 functions as a regulator of p53 dynamics in the DNA damage response. Journal of Theoretical Biology, 388, 1–10.

    PubMed  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Key Research and Development Program of China (2017YFA0506000, 2017YFA0205400), National Natural Science Foundation of China (31971185).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingzhe Sun or Pingping Shen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Sun, T. & Shen, P. Deciphering p53 dynamics and cell fate in DNA damage response using mathematical modeling. GENOME INSTAB. DIS. 1, 265–277 (2020). https://doi.org/10.1007/s42764-020-00019-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42764-020-00019-6

Keywords

Navigation