Skip to main content
Log in

Numerical challenges of CFD simulations of two-phase injectors working in the direct contact condensation mode

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

This work describes numerical simulations applied for the investigation of vapor injection into subcooled flow in a capillary jet loop (CJL) system. The improvement of the injector (or ejector) design is discussed here by examining several parameters influencing its performance. Consequently, this paper covers the influence of the entrainment ratio γ (the ratio of the mass flow rate of the low-pressure secondary flow to the mass flow rate of the high-pressure primary flow), the characteristics of the working fluid, and the geometry on the pressure rise through the mixing region, the criterion chosen here to measure the injector efficiency. Considering that full condensation is expected to occur, part of the simulation will also cover the numerical aspects related to phase change to establish the most appropriate choices for obtaining a reliable solution for full condensation cases. Here, condensation is studied for two different injector designs: one with a vapor nozzle inclined to the direction of subcooled flow and the other with an inline orientation with respect to the secondary flow. From computational fluid dynamics (CFD) simulations performed using the commercial software Ansys Fluent (versions 19.4 and 2023R1), a parametric study indicated that increasing the injection angle had a negative impact on the pressure increase. The same negative impact was observed for γ. Regarding the working fluid, the use of methanol and acetone appeared to increase the pressure rise in the vapor injection region (in comparison to R1233zd), inducing faster condensation and, consequently, affecting the injector efficiency in a positive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFL:

Courant–Friedrichs–Lewy criterion

CJL:

capillary jet loop

DCC:

direct contact condensation

LES:

large eddy simulation

LHP:

loop heat pipe

RANS:

Reynolds-averaged Navier Stokes

SST:

shear stress transport

TPR:

two-phase ring

VF:

volume fraction

γ :

entrainment ratio

α :

volume fraction

ρ :

density, kg/m3

c p :

specific heat at constant pressure, J/(kg·K)

C :

mass transfer frequency, s−1

e i :

internal energy of the phase, J/kg

h ij :

heat transfer coefficient between the phases, W/(m2·K)

H i :

enthalpy of the phase, J/kg

k :

thermal conductivity, W/(m·K)

L dcc :

length for full condensation

\(\dot{m}_{ij}\) :

mass transfer rate, kg/(m3·s)

M :

mass flow rate, kg/s

p :

pressure shared by all phases, Pa

Q :

heat exchange between the phases, W

T i :

temperature of the phase, K

\(\overrightarrow{v_{i}}\) :

velocity of the phase, m/s

\(\overrightarrow{v_{ij}}\) :

interphase velocity, m/s

cond:

condensation

ev:

evaporation

l:

liquid phase

mix:

mixture

sat:

saturation

v:

vapor phase

References

  • Ali Muhammad, H., Abdullah, H. M., Rehman, Z., Lee, B., Baik, Y. J., Cho, J., Imran, M., Masud, M., Saleem, M., Butt, M. S. 2020. Numerical modeling of ejector and development of improved methods for the design of ejector-assisted refrigeration system. Energies, 13: 5835.

    Article  Google Scholar 

  • Ansys. 2023a. Ansys®Fluent Release 2023 R1, Theory Guide.

  • Ansys. 2023b. Ansys®Fluent Release 2023 R1, User Guide, Part II: Meshing Mode.

  • Araneo, L., Clavenna, R., Boubaker, R., Dupont, V. 2021. Performance analysis and simplified modelling of a capillary jet loop heat pipe. Applied Thermal Engineering, 197: 117407.

    Article  Google Scholar 

  • Ariafar, K., Buttsworth, D., Al-Doori, G., Sharifi, N. 2016. Mixing layer effects on the entrainment ratio in steam ejectors through ideal gas computational simulations. Energy, 95: 380–392.

    Article  Google Scholar 

  • Atmaca, A. U., Erek, A., Ekren O. 2020. One-dimensional analysis of the convergent-divergent motive nozzle for the two-phase ejector: Effect of the operating and design parameters. Applied Thermal Engineering, 181: 115866.

    Article  Google Scholar 

  • Atmaca, M., Ezgi, C. 2022. Three-dimensional CFD modeling of a steam ejector. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44: 2236–2247.

    Article  Google Scholar 

  • Besagni, G., Mereu, R., Inzoli, F. 2016. Ejector refrigeration: A comprehensive review. Renewable and Sustainable Energy Reviews, 53: 373–407.

    Article  Google Scholar 

  • Braga Vieira, C., Litrico, G., Askari, E., Lemieux, G., Proulx, P. 2018. Hydrodynamics of bubble columns: Turbulence and population balance model. ChemEngineering, 2: 12.

    Article  Google Scholar 

  • Calyos. 2023. Available at https://www.calyos-tm.com/

  • Chen, X., Tian, M., Qu, X., Zhang, Y. 2019. Numerical investigation on the interfacial characteristics of steam jet condensation in subcooled water flow in a restricted channel. International Journal of Heat and Mass Transfer, 137: 908–921.

    Article  Google Scholar 

  • Clavenna, R., Araneo, L., Dupont, V., Boubaker, R. 2022. Capillary Jet Loop performance in parabolic flight. Applied Thermal Engineering, 217: 119221.

    Article  Google Scholar 

  • Colarossi, M., Trask, N., Schmidt, D. P., Bergander, M. J. 2012. Multidimensional modeling of condensing two-phase ejector flow. International Journal of Refrigeration, 35: 290–299.

    Article  Google Scholar 

  • Crowe, C., Schwarzkopf, J., Sommerfeld, M., Tsuji, Y. 2012. Multiphase Flow with Droplets and Particles, 2nd edn. CRC Press.

  • Danho, E., Bouthier, M. 1993. Kelvin-Helmholtz two-phase flow instability. In: Instabilities in Multiphase Flows. Gouesbet, G., Berlemont, A. Eds. Boston, USA: Springer, 231–239.

    Chapter  Google Scholar 

  • Dupont V., Paran, B., Van Oost, S., Billet, C. 2018. Capillary jet loop. In: Proceedings of the 19th International Heat Pipe Conference.

  • Dupont, V., Accorinti, F., Henno, M., Perez, P. S. S., Carracedo, F. R. 2023. Capillary Jet Loop in direct contact condensation mode used to perform ice protection function of turboprop composite nacelle intake. In: Proceedings of the Joint 21st International Heat Pipe Conference and 15th International Heat Pipe Symposium.

  • Eames, I. W., Ablwaifa, A. E., Petrenko, V. 2007. Results of an experimental study of an advanced jet-pump refrigerator operating with R245fa. Applied Thermal Engineering, 27: 2833–2840.

    Article  Google Scholar 

  • Godino, D. M., Corzo, S. F., Ramajo, D. E. 2020. Two-phase modeling of water-air flow of dispersed and segregated flows. Annals of Nuclear Energy, 149: 107766.

    Article  Google Scholar 

  • Grazzini, G., Milazzo, A., Mazzelli, F. 2018. Ejectors for Efficient Refrigeration: Design, Applications and Computational Fluid Dynamics. Gewerbestrasse, Switzerland: Springer, 117–147.

    Book  Google Scholar 

  • Gulawani, S. S., Joshi, J. B., Shah, M. S., Ramaprasad, C. S., Shukla, D. S. 2006. CFD analysis of flow pattern and heat transfer in direct contact steam condensation. Chemical Engineering Science, 61: 5204–5220.

    Article  Google Scholar 

  • Kharangate, C. R., Mudawar, I. 2017. Review of computational studies on boiling and condensation. International Journal of Heat and Mass Transfer, 108: 1164–1196.

    Article  Google Scholar 

  • Koirala, R., Inthavong, K., Date, A. 2022. Numerical study of flow and direct contact condensation of entrained vapor in water jet eductor. Experimental and Computational Multiphase Flow, 4: 291–303.

    Article  Google Scholar 

  • Koirala, R., Ve, Q. L., Rupakheti, E., Inthavong, K., Date, A. 2023. Design enhancement of eductor for active vapor transport and condensation during two-phase single-species flow. Energies, 16: 1265.

    Article  Google Scholar 

  • Lee, H., Kharangate, C. R., Mascarenhas, N., Park, I., Mudawar, I. 2015. Experimental and computational investigation of vertical downflow condensation. International Journal of Heat and Mass Transfer, 85: 865–879.

    Article  Google Scholar 

  • Lee, W. H. 1979. A pressure iteration scheme for two-phase modeling. Technical Report LA-UR 79-975. Los Alamos Scientific Laboratory, Los Amos, New Mexico.

    Google Scholar 

  • Liu, Z., Sunden, B., Yuan, J. 2012. VOF modeling and analysis of filmwise condensation between vertical parallel plates. Heat Transfer Research, 43: 47–68.

    Article  Google Scholar 

  • Mazzelli, F., Giacomelli, F., Milazzo, A. 2018. CFD modeling of condensing steam ejectors: Comparison with an experimental test-case. International Journal of Thermal Sciences, 127: 7–18.

    Article  Google Scholar 

  • Menter, F. R. 1994. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32: 1598–1605.

    Article  Google Scholar 

  • Moses, C. A., Stein, G. D. 1978. On the growth of steam droplets formed in a Laval nozzle using both static pressure and light scattering measurements. Journal of Fluids Engineering, 100: 311–322.

    Article  Google Scholar 

  • NEA. 2011. Report of the OECD/NEA-Vattenfall T-junction benchmark exercise. OECD Publishing, Paris.

    Google Scholar 

  • Odar, F., Hamilton, W. S. 1964. Forces on a sphere accelerating in a viscous fluid. Journal of Fluid Mechanics, 18: 302.

    Article  Google Scholar 

  • Ranz, W. E., Marshall, W. R. 1952. Vaporation from drops, Part 1. Chemical Engineering Progress, 48: 141–146.

    Google Scholar 

  • Richardson, L. F. 1911. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philosophical Transactions of the Royal Society of London Series A, Containing Papers of a Mathematical or Physical Character, 210: 307–357.

    Google Scholar 

  • Riffat, S. B., Gan, G., Smith, S. 1996. Computational fluid dynamics applied to ejector heat pumps. Applied Thermal Engineering, 16: 291–297.

    Article  Google Scholar 

  • Roache, P. J. 1998. Verification and Validation in Computational Science and Engineering. Hermosa Pub.

  • Roache, P. J., Ghia, K. N., White, F. M. 1986. Editorial policy statement on the control of numerical accuracy. Journal of Fluids Engineering, 108: 2.

    Article  Google Scholar 

  • Ruangtrakoon, N., Aphornratana, S. 2014. Development and performance of steam ejector refrigeration system operated in real application in Thailand. International Journal of Refrigeration, 48: 142–152.

    Article  Google Scholar 

  • Shiller, L., Naumann, A. 1935. A drag coefficient correlation. Zeitschrift des Vereins Deutscher Ingenieure, 77: 318–320.

    Google Scholar 

  • Sriveerakul, T., Aphornratana, S., Chunnanond, K. 2007. Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results. International Journal of Thermal Sciences, 46: 812–822.

    Article  Google Scholar 

  • Szijártó, R. 2015. Condensation of steam in horizontal pipes—Model development and validation. Ph.D. Thesis. ETH Zurich.

  • Timperi, A. 2014. Conjugate heat transfer LES of thermal mixing in a T-junction. Nuclear Engineering and Design, 273: 483–496.

    Article  Google Scholar 

  • Varga, S., Oliveira, A. C., Diaconu, B. 2009. Analysis of a solar-assisted ejector cooling system for air conditioning. International Journal of Low-Carbon Technologies, 4: 2–8.

    Article  Google Scholar 

  • Wang, X. D., Lei, H. J., Dong, J. L., Tu, J. Y. 2012. The spontaneously condensing phenomena in a steam-jet pump and its influence on the numerical simulation accuracy. International Journal of Heat and Mass Transfer, 55: 4682–4687.

    Article  Google Scholar 

  • Zong, X., Liu, J. P., Yang, X. P., Chen, Y., Yan, J. J. 2016. Experimental study on the stable steam jet in subcooled water flow in a rectangular mix chamber. Experimental Thermal and Fluid Science, 75: 249–257.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Walloon Region of Belgium for funding this project under CWALity DE (DGO6) convention no. 1810169 and Skywin SW_ELOISE convention no. 8524.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Braga Vieira.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, C.B., de Ghelin, O.F., Goffaux, C. et al. Numerical challenges of CFD simulations of two-phase injectors working in the direct contact condensation mode. Exp. Comput. Multiph. Flow 6, 214–228 (2024). https://doi.org/10.1007/s42757-024-0194-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-024-0194-1

Keywords

Navigation