Skip to main content
Log in

Effect of far-field ambient conditions on interfacial solar vapor generation using a two-phase closed thermosyphon

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

The fundamental heat/mass transport mechanism from the vapor-generating surfaces related to interfacial solar vapor generators for desalination applications has received less attention. The majority of the investigations in this regard were not carried out inside controlled environmental facilities, and the operating conditions for different proposed configurations in the literature varied. Although few investigations have reported theoretical framework and computational simulations of the heat/mass transport phenomena during the interfacial evaporation involved in such cases, no systematic experimental investigation exists in the literature. In the present study, a controlled environmental test section capable of having different far-field ambient conditions and maintaining a quiescent environment, is designed and fabricated. The performance of a thermosyphon-based heat localization strategy proposed by the authors for efficient and reliable vapor generation was tested in this test section. Different far-field ambient conditions (RH = 30%–80% and Tamb = 25–42 °C) are investigated on the evaporating mass flux and heat-to-vapor conversion efficiency. The experimentally obtained evaporative mass flux was compared against three Sherwood—Rayleigh empirical correlations for natural convection-driven evaporation. It was shown that the existing relations matched well for the cases that fell within the assigned range of Rayleigh number of these correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A e :

area of evaporation surface (m2)

C :

equilibrium molar concentration of water vapor

D :

diffusion coefficient (m2/s)

E :

solar irradiation (W/m2)

g :

acceleration due to gravity (m/s2)

Gr :

Grashof number (\(g\Delta \rho L_{\rm{c}}^3\)/(ρv2))

h :

enthalpy of moist air (kJ/kg)

h fg :

latent heat of evaporation (J/kg)

h L :

sensible heat of evaporation (J/kg)

h m :

mass transfer coefficient (m/s)

I :

input current (A)

L c :

characteristic length (m)

\({\dot m}\) :

mass flow rate (kg/s)

\({{\dot m}^{\prime \prime }}\) :

evaporative mass flux (kg/(m2·s))

P :

pressure (Pa)

Pe :

Peclet number (uintδ/D)

p w :

partial pressure of water vapor (Pa)

Ra :

Rayleigh number (\(g\Delta \rho L_{\rm{c}}^3/(\rho vD)\))

Ri :

Richardson number (\(g\beta \Delta T{L_{\rm{c}}}/U_{\rm{o}}^2\))

R G :

gas constant (J/(kg·K))

R th :

thermal resistance of thermosyphon (K/W)

Sc :

Schmidt number (v/D)

T :

temperature (K)

u :

velocity (m/s)

V :

input voltage (V)

α m :

empirical constant

α s :

solar absorptivity

β :

coefficient of thermal expansion (1/K)

δ :

diffusive boundary layer thickness (m)

μ :

dynamic viscosity (Pa·s)

ν :

kinematic viscosity (m2/s)

ϑ :

empirical constant

η :

thermal efficiency

ρ :

density (kg/m3)

ϕ :

relative humidity (%)

ω :

absolute humidity

\(\wp \) :

perimeter of the evaporating surface (m)

A:

adiabatic section

a:

air

avg:

average

C:

condenser section

c:

critical

da:

dry air

E:

evaporator section

G:

gas

int:

interface

ma:

moist air

ma,a:

moist air at ambient

ma,s:

moist air at the evaporating surface

ref:

reference

S:

vapor generating surface

tot:

total

w:

water vapor

w,a:

water vapor at ambient

w,s:

water vapor at the evaporating surface

GOR:

gain output ratio

RH:

relative humidity

STD:

solar thermal desalination

SWP:

specific water productivity

TPCT:

two-phase closed thermosyphon

References

  • Boriskina, S. V., Raza, A., Zhang, T., Wang, P., Zhou, L., Zhu, J. 2019. Nanomaterials for the water-energy nexus. MRS Bulletin, 44: 59–66.

    Article  Google Scholar 

  • Bower, S., Saylor, J. 2009. A study of the Sherwood–Rayleigh relation for water undergoing natural convection-driven evaporation. International Journal of Heat and Mass Transfer, 52: 3055–3063.

    Article  Google Scholar 

  • Chatterjee, D., Kulshrestha, T., Khandekar, S. 2023. Continuous vapor generation for thermal-desalination applications using a thermosyphon based heat localization strategy. Desalination, 555: 116492.

    Article  Google Scholar 

  • Chavanne, X., Chillà, F., Chabaud, B., Castaing, B., Hébral, B. 2001. Turbulent Rayleigh–Bénard convection in gaseous and liquid He. Physics of Fluids, 13: 1300–1320.

    Article  Google Scholar 

  • Chen, C., Kuang, Y., Hu, L. 2019. Challenges and opportunities for solar evaporation. Joule, 3: 683–718.

    Article  Google Scholar 

  • Cooper, T. A., Zandavi, S. H., Ni, G. W., Tsurimaki, Y., Huang, Y., Boriskina, S. V., Chen, G. 2018. Contactless steam generation and superheating under one Sun illumination. Nature Communications, 9: 5086.

    Article  Google Scholar 

  • Feldmann, D., Pinchasik, B. E. 2023. The temperature dependent dynamics and periodicity of dropwise condensation on surfaces with wetting heterogeneities. Journal of Colloid and Interface Science, 644: 146–156.

    Article  Google Scholar 

  • Globe, S., Dropkin, D. 1959. Natural-convection heat transfer in liquids confined by two horizontal plates and heated from below. Journal of Heat Transfer, 81: 24–28.

    Article  Google Scholar 

  • He, C., Zhang, P., Zhu, R., Ye, R., Li, P., Liu, J. 2023. Experimental study of the effects of temperature and humidity on the wear and damage behavior of U71Mn rail steel. Wear, 524–525: 204827.

    Article  Google Scholar 

  • Huang, Q., Liang, X., Yan, C., Liu, Y. 2021. Review of interface solar-driven steam generation systems: High-efficiency strategies, applications and challenges. Applied Energy, 283: 116361.

    Article  Google Scholar 

  • Kim, J. U., Lee, S., Kang, S. J., Kim, T. I. 2018. Materials and design of nanostructured broadband light absorbers for advanced light-to-heat conversion. Nanoscale, 10: 21555–21574.

    Article  Google Scholar 

  • Kumar, N., Arakeri, J. H. 2015. Natural convection driven evaporation from a water surface. Procedia IUTAM, 15: 108–115.

    Article  Google Scholar 

  • Li, H., Yan, Z., Li, Y., Hong, W. 2020. Latest development in salt removal from solar-driven interfacial saline water evaporators: Advanced strategies and challenges. Water Research, 177: 115770.

    Article  Google Scholar 

  • Lloyd, J. R., Moran, W. R. 1974. Natural convection adjacent to horizontal surface of various planforms. Journal of Heat Transfer, 96: 443–447.

    Article  Google Scholar 

  • Ma, X., Jia, X., Yao, G., Wen, D. 2022. Umbrella evaporator for continuous solar vapor generation and salt harvesting from seawater. Cell Reports Physical Science, 3: 100940.

    Article  Google Scholar 

  • Menon, A. K., Haechler, I., Kaur, S., Lubner, S., Prasher, R. S. 2020. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management. Nature Sustainability, 3: 144–151.

    Article  Google Scholar 

  • Ni, G., Zandavi, S. H., Javid, S. M., Boriskina, S. V., Cooper, T. A., Chen, G. 2018. A salt-rejecting floating solar still for low-cost desalination. Energy & Environmental Science, 11: 1510–1519.

    Article  Google Scholar 

  • Peng, G., Deng, S., Sharshir, S. W., Ma, D., Kabeel, A. E., Yang, N. 2020. High efficient solar evaporation by airing multifunctional textile. International Journal of Heat and Mass Transfer, 147: 118866.

    Article  Google Scholar 

  • Poós, T., Varju, E. 2019. Review for prediction of evaporation rate at natural convection. Heat and Mass Transfer, 55: 1651–1660.

    Article  Google Scholar 

  • Rao, V. K., Radhakrishnan, P. P. 1977. Evaporation of water from pools. Journal of the Indian Institute of Science, 59(3): 106.

    Google Scholar 

  • Goldstein, R. J., Sparrow, E. M., Jones, D. C. 1973. Natural convection mass transfer adjacent to horizontal plates. International Journal of Heat and Mass Transfer, 16: 1025–1035.

    Article  Google Scholar 

  • Penman, H. L. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 193: 120–145.

    Google Scholar 

  • Singh, S. K., Khandekar, S., Pratap, D., Ramakrishna, S. A. 2013. Wetting dynamics and evaporation of sessile droplets on nano-porous alumina surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 432: 71–81.

    Article  Google Scholar 

  • Smith, C. C., Löf, G., Jones, R. 1994. Measurement and analysis of evaporation from an inactive outdoor swimming pool. Solar Energy, 53: 3–7.

    Article  Google Scholar 

  • Sparrow, E. M., Kratz, G. K., Schuerger, M. J. 1983. Evaporation of water from a horizontal surface by natural convection. Journal of Heat Transfer, 105: 469–475.

    Article  Google Scholar 

  • Sweers, H. E. 1976. A nomogram to estimate the heat-exchange coefficient at the air-water interface as a function of wind speed and temperature; a critical survey of some literature. Journal of Hydrology, 30: 375–401.

    Article  Google Scholar 

  • Vaartstra, G., Zhang, L., Lu, Z., Díaz-Marín, C. D., Grossman, J. C., Wang, E. N. 2020. Capillary-fed, thin film evaporation devices. Journal of Applied Physics, 128: 130901.

    Article  Google Scholar 

  • Varju, E., Poós, T. 2022. New dimensionless correlation for mass transfer at evaporation of open liquid surface in natural convection. International Communications in Heat and Mass Transfer, 136: 106102.

    Article  Google Scholar 

  • Wagner, W., Pruß, A. 2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data, 31: 387–535.

    Article  Google Scholar 

  • Wang, Z., Horseman, T., Straub, A. P., Yip, N. Y., Li, D., Elimelech, M., Lin, S. 2019. Pathways and challenges for efficient solar-thermal desalination. Science Advances, 5: eaax0763.

    Article  Google Scholar 

  • Wu, C. M., Naseem, S., Chou, M. H., J. H., Jian, Y. Q. 2019. Recent advances in tungsten-oxide-based materials and their applications. Frontiers in Materials, 6: 49.

    Article  Google Scholar 

  • Wu, L., Dong, Z., Cai, Z., Ganapathy, T., Fang, N. X., Li, C., Yu, C., Zhang, Y., Song, Y. 2020. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nature Communications, 11: 521.

    Article  Google Scholar 

  • Xia, Y., Hou, Q., Jubaer, H., Li, Y., Kang, Y., Yuan, S., Liu, H., Woo, M. W., Zhang, L., Gao, L., et al. 2019. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy & Environmental Science, 12: 1840–1847.

    Article  Google Scholar 

  • Xu, J., Wang, Z., Chang, C., Fu, B., Tao, P., Song, C., Shang, W., Deng, T. 2020a. Solar-driven interfacial desalination for simultaneous freshwater and salt generation. Desalination, 484: 114423.

    Article  Google Scholar 

  • Xu, K., Wang, C., Li, Z., Wu, S., Wang, J. 2021. Salt mitigation strategies of solar-driven interfacial desalination. Advanced Functional Materials, 31: 2007855.

    Article  Google Scholar 

  • Xu, Z., Zhang, L., Zhao, L., Li, B., Bhatia, B., Wang, C., Wilke, K. L., Song, Y., Labban, O., Lienhard, J. H., et al. 2020b. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy & Environmental Science, 13: 830–839.

    Article  Google Scholar 

  • Zhang, L., Li, X., Zhong, Y., Leroy, A., Xu, Z., Zhao, L., Wang, E. N. 2022. Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nature Communications, 13: 849.

    Article  Google Scholar 

  • Zhang, L., Xu, Z., Zhao, L., Bhatia, B., Zhong, Y., Gong, S., Wang, E. N. 2021. Passive, high-efficiency thermally-localized solar desalination. Energy & Environmental Science, 14: 1771–1793.

    Article  Google Scholar 

  • Zhang, Q., Yang, H., Xiao, X., Wang, H., Yan, L., Shi, Z., Chen, Y., Xu, W., Wang, X. 2019. A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam. Journal of Materials Chemistry A, 7: 14620–14628.

    Article  Google Scholar 

  • Zhang, Y., Xiong, T., Nandakumar, D. K., Tan, S. C. 2020. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Advanced Science, 7: 1903478.

    Article  Google Scholar 

  • Zhu, L., Gao, M., Peh, C. K. N., Ho, G. W. 2019. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy, 57: 507–518.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for research funding provided by the Department of Science and Technology, Government of India, under the Core Research Grant (CRG) from Science and Engineering Research Board (SERB) [CRG/2020/000584], and by the Ministry of Textile, Government of India, under the National Technical Textile Mission (NTTM, Scheme code: 3972), Sanction code: 2/3/2021-NTTM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debartha Chatterjee.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulshrestha, T., Chatterjee, D. & Khandekar, S. Effect of far-field ambient conditions on interfacial solar vapor generation using a two-phase closed thermosyphon. Exp. Comput. Multiph. Flow (2024). https://doi.org/10.1007/s42757-023-0186-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42757-023-0186-6

Keywords

Navigation