Skip to main content
Log in

Factors affecting the formation of a cumulative jet after the collapse of a vapor bubble in a subcooled liquid

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

This paper presents the results of numerical simulation of the dynamics of a vapor bubble at the end of an optical fiber. The bubble appears as a result of the absorption of laser radiation energy by water. Our model is prototyped by the level-set model that describes the movement of two phases (water and vapor) and the interface position. For the closing relationships we used the previously obtained experimental data of nucleus formation. Numerical calculations are based on our earlier hypothesis about the predominant influence of the hydrodynamic pattern on the formation and characteristics of the cumulative jet. We determined the influence of the hydrophilicity of the optical fiber surface on the pulse magnitude of the cumulative jet. The influence of the salt impurity content on the jet formation happened to be predictably small due to the insignificant change in the aqua solute viscosity. To confirm the correct understanding of the mechanics of the ongoing hydrodynamic processes, we compared the results of numerical simulation with the theoretical estimate for the velocity obtained for a cumulative jet. The results of the numerical simulation obtained in this work indicate the decisive influence of the properties of the optical fiber surface, since the variability of the velocity of the cumulative jet depending on the wettability and geometry of the end-face was at least 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brujan, E. A., Takahira, H., Ogasawara, T. 2019. Planar jets in collapsing cavitation bubbles. Experimental Thermal and Fluid Science, 101: 48–61.

    Article  Google Scholar 

  • Chernov, A. A., Guzev, M. A., Pil’nik, A. A., Adamova T. P., Levin, A. A., Chudnovskii, V. M. 2021. The effect of secondary boiling on the dynamics of a jet formed during vapor-bubble collapse induced by laser heating of a liquid. Doklady Physics, 66: 325–328.

    Article  ADS  CAS  Google Scholar 

  • Chernov, A. A., Pil’nik, A. A., Levin, A. A., Safarov, A. S., Adamova, T. P., Elistratov, D. S. 2022. Laser-induced boiling of subcooled liquid: Influence of the radiation power on the vapor bubble nucleation and growth. International Journal of Heat and Mass Transfer, 184: 122298.

  • Chernov, A. A., Pil’nik, A. A., Vladyko, I. V., Lezhnin, S. I. 2020. New semi-analytical solution of the problem of vapor bubble growth in superheated liquid. Scientific Reports, 10: 16526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chudnovskii, V. M., Levin, A. A., Yusupov, V. I., Guzev, M. A., Chernov, A. A. 2020. The formation of a cumulative jet during the collapse of a vapor bubble in a subcooled liquid formed as a result of laser heating. International Journal of Heat and Mass Transfer, 150: 119286.

    Article  CAS  Google Scholar 

  • Cui, P., Zhang, A. M., Wang, S., Khoo, B. C. 2018. Ice breaking by a collapsing bubble. Journal of Fluid Mechanics, 841: 287–309.

    Article  ADS  Google Scholar 

  • Dervieux, A., Thomasset, F. 1979. A finite element method for the simulation of a Rayleigh-Taylor instability. In: Lecture Notes in Mathematics: Approximation Methods for Navier-Stokes Problems. Rautmann, R., Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 145–158.

    Google Scholar 

  • Dijkink, R., Le Gac, S., Nijhuis, E., van den Berg, A., Vermes, I., Poot, A., Ohl, C. D. 2008. Controlled cavitation-cell interaction: Trans-membrane transport and viability studies. Physics in Medicine and Biology, 53: 375–390.

    Article  ADS  PubMed  Google Scholar 

  • Forster, H. K., Zuber, N. 1954. Growth of a vapor bubble in a superheated liquid. Journal of Applied Physics, 25: 474–478.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • George, S. D., Chidangil, S., Mathur, D. 2019. Minireview: Laser-induced formation of microbubbles—biomedical implications. Langmuir, 35: 10139–10150.

    Article  CAS  PubMed  Google Scholar 

  • Inam, S., Lappa, M. 2022. Hybrid forced-buoyancy convection in a channel with a backward facing step. International Journal of Heat and Mass Transfer, 194: 122963.

    Article  Google Scholar 

  • Lavrentiev, M. A., Shabat, B. V. 1973. Problems of Hydrodynamics and Their Mathematical Models. Moscow: Nauka.

    Google Scholar 

  • Lee, W. H. 1980. A pressure iteration scheme for two-phase flow modeling. In: Multiphase Transport: Fundamentals, Reactor Safety, Applications. Veziroglu, T. N., Ed. Hemisphere Publishing, 407–432.

  • Levin, A., Khan, P. 2019. Characteristics of nucleate boiling under conditions of pulsed heat release at the heater surface. Applied Thermal Engineering, 149: 1215–1222.

    Article  Google Scholar 

  • Levin, A., Khan, P. 2021. Intensification of non-stationary nucleate boiling at increasing flow velocity. Heat Transfer Engineering, 43: 388–396.

    Article  ADS  Google Scholar 

  • Miyatake, O., Tanaka, I., Lior, N. 1997. A simple universal equation for bubble growth in pure liquids and binary solutions with a nonvolatile solute. International Journal of Heat and Mass Transfer, 40: 1577–1584.

    Article  CAS  Google Scholar 

  • Mohammadzadeh, M., Gonzalez-Avila, S. R., Liu, K., Wang, Q. J., Ohl, C. D. 2017. Synthetic jet generation by high-frequency cavitation. Journal of Fluid Mechanics, 823: R3.

    Article  ADS  Google Scholar 

  • Ohl, C. D., Arora, M., Dijkink, R., Janve, V., Lohse, D. 2006. Surface cleaning from laser-induced cavitation bubbles. Applied Physics Letters, 89: 074102.

    Article  ADS  Google Scholar 

  • Padilla-Martinez, J. P., Berrospe-Rodriguez, C., Aguilar, G., Ramirez-San-Juan, J. C., Ramos-Garcia, R. 2014. Optic cavitation with CW lasers: A review. Physics of Fluids, 26: 122007.

    Article  ADS  Google Scholar 

  • Plesset, M. S., Zwick, S. A. 1952. A nonsteady heat diffusion problem with spherical symmetry. Journal of Applied Physics, 23: 95–98.

    Article  ADS  MathSciNet  Google Scholar 

  • Prosperetti, A. 2017. Vapor bubbles. Annual Review of Fluid Mechanics, 49: 221–248.

    Article  ADS  MathSciNet  Google Scholar 

  • Robinson, A. J., Judd, R. L. 2004. The dynamics of spherical bubble growth. International Journal of Heat and Mass Transfer, 47: 5101–5113.

    Article  Google Scholar 

  • Robles, V., Gutierrez-Herrera, E., Devia-Cruz, L. F., Banks, D., Camacho-Lopez, S., Aguilar, G. 2020. Soft material perforation via double-bubble laser-induced cavitation microjets. Physics of Fluids, 32: 042005.

    Article  ADS  CAS  Google Scholar 

  • Starinskiy, S. V., Shukhov, Y. G., Bulgakov, A. V. 2017. Laser-induced damage thresholds of gold, silver and their alloys in air and water. Applied Surface Science, 396: 1765–1774.

    Article  ADS  CAS  Google Scholar 

  • Tanasawa, I. 1991. Advances in condensation heat transfer. Advances in Heat Transfer, 21: 55–139.

    Article  CAS  Google Scholar 

  • Thoroddsen, S. T., Takehara, K., Etoh, T. G., Ohl, C. D. 2009. Spray and microjets produced by focusing a laser pulse into a hemispherical drop. Physics of Fluids, 21: 112101.

    Article  ADS  Google Scholar 

  • Wang, Q., Gu, J., Li, Z., Yao, W. 2017. Dynamic modeling of bubble growth in vapor-liquid phase change covering a wide range of superheats and pressures. Chemical Engineering Science, 172: 169–181.

    Article  ADS  CAS  Google Scholar 

  • Zudin, Y. B. 2019. Non-equilibrium Evaporation and Condensation Processes. Springer.

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Project No. 22-19-00092).

Author information

Authors and Affiliations

Authors

Contributions

A. A. Levin: conceptualization, methodology, resources, investigation, formal analysis, writing of original draft, and supervision; A. S. Safarov: investigation, validation, and software; A. A. Chernov: funding acquisition, investigation, formal analysis, writing of review, and editing.

Corresponding author

Correspondence to Anatoliy A. Levin.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, A.A., Safarov, A.S. & Chernov, A.A. Factors affecting the formation of a cumulative jet after the collapse of a vapor bubble in a subcooled liquid. Exp. Comput. Multiph. Flow (2024). https://doi.org/10.1007/s42757-023-0177-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42757-023-0177-7

Keywords

Navigation