Skip to main content
Log in

CFD validation of condensation heat transfer in scaled-down small modular reactor applications, Part 1: Pure steam

Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

This study presented the state-of-the-art computational fluid dynamics (CFD) validation and scaling of the condensation heat transfer (CHT) models for passive containment cooling system (PCCS) of the small modular reactor (SMR). The STAR-CCM+ software with real 3D computational domains was used to validate the condensation models with a preliminary assessment of pure steam scaling performance. The boundary and appropriate physics conditions from the test data were applied. The condensation was modeled using the condensation-seed parameter as a source term for mass, momentum, and energy conservation equations. A small percentage of air (within 1%) was considered in the test section; hence, multi-component gas models were used. The implicit-unsteady numerical solver was applied to improve numerical stability. Mesh size, run time (duration), and time step sensitivity analyses were applied to obtain optimized simulation results. The test fluid parameters—temperature (at bulk steam-mixture, bulk coolant, inner and outer tube walls), condensation film thickness, mass fraction, and heat flux—were utilized to validate the CFD simulations. Finally, Nusselt number (Nu), as the dimensionless number heat transfer, was calculated for diameter scaled-up and scaled-down geometries. The heat transfer coefficient and Nu values were compared to evaluate the scalability performance of CHT models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ahmed, F., Ara, N., Deshpande, V., Mollah, A. S., Bhowmik, P. K. 2021a. CFD validation with optimized mesh using benchmarking data of pebble-bed high-temperature reactor. Prog Nucl Energ, 134: 134.

    Article  Google Scholar 

  • Ahmed, F., Abir, M. A., Bhowmik, P. K., Deshpande, V., Mollah, A. S., Kumar, D., Alam, S. 2021b. Computational assessment of thermohydraulic performance of Al2O3-water nanofluid in hexagonal rod-bundles subchannel. Prog Nucl Energ, 135: 135.

    Article  Google Scholar 

  • Alamgir, M. D., Aritomi, M., Banoori, S., Atique, M., Bylov, I., Choi, S., Garcia, M., Gimenez, M., Grinberg, M., Hidayatullah, H., et al. 2016. Design safety considerations for water-cooled small modular reactor incorporating lessons learned from the Fukushima Daiichi accident. In: IAEA Tecdoc Series. Vienna, Austria: International Atomic Energy Agency.

    Google Scholar 

  • Ambrosini, W., Forgione, N., Merli, F., Oriolo, F., Paci, S., Kljenak, I., Kostka, P., Vyskocil, L., Travis, J. R., Lehmkuhl, J., et al. 2014. Lesson learned from the SARNET wall condensation benchmarks. Ann Nucl Energy, 74: 74–153.

    Article  Google Scholar 

  • Bestion, D., D’Auria, F., Lien, P., Nakamura, H. 2016. A state-of-the-art report on scaling in system thermal-hydraulics applications to nuclear safety and design. Technical Report. Nuclear Energy Agency, USA.

    Google Scholar 

  • Bhowmik, P. K. 2016. Nanofluid operation and valve engineering of super for small unit passive enclosed reactor. Ph.D. Dissertation. Seoul National University Graduate School, Seoul, Republic of Korea.

    Google Scholar 

  • Bhowmik, P. K., Shamim, J. A., Chen, X., Suh, K. Y. 2021a. Rod bundle thermal-hydraulics experiment with water and water-Al2O3 nanofluid for small modular reactor. Ann Nucl Energy, 150: 150.

    Article  Google Scholar 

  • Bhowmik, P. K., Schlegel, J. P., Kalra, V., Mills, C., Usman, S. 2021b. Design of condensation heat transfer experiment to evaluate scaling distortion in small modular reactor safety analysis. J Nucl Eng Radiat Sci, 7: 7.

    Article  Google Scholar 

  • Bhowmik, P. K., Schlegel, J., Kalra, V., Alam, S., Hong, S., Usman, S. 2021c. CFD validation of condensation heat transfer in scaled-down small modular reactor applications, Part 2: Steam and non-condensable gas. Exp Comput Multiph Flow, https://doi.org/10.1007/s42757-021-0113-7.

    Google Scholar 

  • Bhowmik, P. K., Suh, K. Y. 2021. Flow mapping using 3D full-scale CFD simulation and hydrodynamic experiments of an ultra-supercritical turbine’s combined valve for nuclear power plant. Int J Energy Environ Eng, https://doi.org/10.1007/s40095-021-00394-0.

  • Bradley, K. 2013. NEAMS: The nuclear energy advanced modeling and simulation program. Technical Report. Argonne National Lab., USA.

    Book  Google Scholar 

  • Bragg-Sitton, S., Ingersoll, D., Carelli, M. 2015. Handbook of Small Modular Nuclear Reactors, Sawston, Cambridge: Woodhead Publishing.

    Google Scholar 

  • Dehbi, A., Janasz, F., Bell, B. 2013. Prediction of steam condensation in the presence of non-condensable gases using a CFD-based approach. Nucl Eng Des, 258: 258–199.

    Article  Google Scholar 

  • Donnelly, D. A., Otto, R. T., Mathews, C. E., Wilson, B. A., Schanfein, M. J. 2020. IAEA design information verification authorities for small modular reactors: Potential challenges and solutions. Report No. PNNL-SA-143682, Seattle, WA, USA.

  • Fu, W., Li, X., Wu, X., Corradini, M. L. 2016. Numerical investigation of convective condensation with the presence of non-condensable gases in a vertical tube. Nucl Eng Des, 297: 297–197.

    Article  Google Scholar 

  • Hasan, F., Mahmud, K. A. H., Khan, M. I., Patil, S., Dennis, B. H., Adnan, A. 2021. Cavitation induced damage in soft biomaterials. Multiscale Sci Eng, 3: 3–67.

    Article  Google Scholar 

  • IEA. 2019. Information available at https://www.iea.org/reports/nuclear-power-in-a-clean-energy-system. Accessed 30 Apr 2020.

  • Juhn, P. E., Kupitz, J., Cleveland, J., Cho, B., Lyon, R. B. 2000. IAEA activities on passive safety systems and overview of international development. Nucl Eng Des, 201: 201–41.

    Article  Google Scholar 

  • Kalra, V. 2017. CFD validation and scaling of condensation heat transfer. M.S. Dissertation. Missouri University of Science and Technology, Rolla, MS, USA.

    Google Scholar 

  • Khan, M. I., Billah, M. M., Rahman, M. M., Hasan, M. N. 2017. Mixed convection heat transfer simulation in a rectangular channel with a variable speed rotational cylinder. AIP Conf Proc, 1919: 1919.

    Google Scholar 

  • Kothe, D. B. 2010. CASL: The consortium for advanced simulation of light water reactors. B Am Phys Soc, 55. https://meetings.aps.org/Meeting/DPP10/Session/CM1L4.

  • Kuhn, S. Z. 1995. Investigation of heat transfer from condensing steam-gas mixtures and turbulent films flowing downward inside a vertical tube. Ph.D. Dissertation. University of California, Berkeley, USA.

    Google Scholar 

  • Lee, H., Kharangate, C. R., Mascarenhas, N., Park, I., Mudawar, I. 2015. Experimental and computational investigation of vertical downflow condensation. Int J Heat Mass Tran, 85: 85–865.

    Google Scholar 

  • Lee, S. W., Baek, W. P., Chang, S. H. 1997. Assessment of passive containment cooling concepts for advanced pressurized water reactors. Ann Nucl Energy, 24: 24–467.

    Google Scholar 

  • Li, J. 2013. CFD simulation of water vapour condensation in the presence of non-condensable gas in vertical cylindrical condensers. Int J Heat Mass Tran, 57: 57–708.

    Article  Google Scholar 

  • Mahaffy, J., Chung, B., Dubois, F., Ducros, F., Graffard, E., Heitsch, M., Henriksson, M., Komen, E., Moretti, F., Morii, T., et al. 2007. Best practice guidelines for the use of CFD in nuclear reactor safety applications. Technical Report. Nuclear Energy Agency, USA.

    Google Scholar 

  • Poinssot, C., Bourg, S., Ouvrier, N., Combernoux, N., Rostaing, C., Vargas-Gonzalez, M., Bruno, J. 2014. Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles. Energy, 69: 69–199.

    Article  Google Scholar 

  • Punetha, M., Khandekar, S. 2017. A CFD based modelling approach for predicting steam condensation in the presence of non-condensable gases. Nucl Eng Des, 324: 324–280.

    Article  Google Scholar 

  • Ravva, S. R., Iyer, K. N., Gupta, S. K., Gaikwad, A. J. 2014. Implementation and validation of the condensation model for containment hydrogen distribution studies. Nucl Eng Des, 270: 270–34.

    Article  Google Scholar 

  • Saha, S., Khan, J., Farouk, T. 2020. Numerical study of evaporation assisted hybrid cooling for thermal power plant application. Appl Therm Eng, 166: 166.

    Article  Google Scholar 

  • Santinello, M., Ricotti, M. 2019. Long-term decay heat removal in a submerged SNR. Ann Nucl Energy, 131: 131–39.

    Article  Google Scholar 

  • Shamim, J. A., Bhowmik, P. K., Chen X., Suh, K. Y. 2016. A new correlation for convective heat transfer coefficient of water-alumina nanofluid in a square array subchannel under PWR condition. Nucl Eng Des, 308: 308–194.

    Article  Google Scholar 

  • Sharma, S. L., Ishii, M., Hibiki, T., Schlegel, J. P., Liu, Y., Buchanan, J. R. 2019. Beyond bubbly two-phase flow investigation using a CFD three-field two-fluid model. Int J Multiph Flow, 113: 113–1.

    Article  MathSciNet  Google Scholar 

  • Sovacool, B. K., Ramana, M. V. 2015. Back to the future: Small modular reactors, nuclear fantasies, and symbolic convergence. Sci Technol Hum Values, 40: 40–96.

    Article  Google Scholar 

  • Su, J., Sun, Z., Fan, G., Ding, M. 2013. Experimental study of the effect of non-condensable gases on steam condensation over a vertical tube external surface. Nucl Eng Des, 262: 262–201.

    Article  Google Scholar 

  • Wang, X., Chang, H., Corradini, M. 2016. A CFD study of wave influence on film steam condensation in the presence of non-condensable gas. Nucl Eng Des, 305: 305–303.

    Google Scholar 

  • Yadav, M. K., Khandekar, S., Sharma, P. K. 2016. An integrated approach to steam condensation studies inside reactor containments: A review. Nucl Eng Des, 300: 300–181.

    Article  Google Scholar 

  • Yeoh, G. H. 2019. Thermal hydraulic considerations of nuclear reactor systems: Past, present and future challenges. Exp Comput Multiph Flow, 1: 1–3.

    Article  Google Scholar 

  • Yuann, R. Y. 1993. Condensation from vapor-gas mixture for forced downflow inside a tube. Ph.D. Dissertation. University of California, Berkeley, CA, USA.

    Google Scholar 

  • Zhang, Y. P., Niu, S. P., Zhang, L. T., Qiu, S. Z., Su, G. H., Tian, W. X. 2015. A review on analysis of LWR severe accident. J Nucl Eng Radiat Sci, 1: 1.

    Article  Google Scholar 

  • Zschaeck, G., Frank, T., Burns, A. D. 2014. CFD modelling and validation of wall condensation in the presence of non-condensable gases. Nucl Eng Des, 279: 279–137.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Small Modular Reactor Research and Education Consortium for the support to complete this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Paul Schlegel.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmik, P.K., Schlegel, J.P., Kalra, V. et al. CFD validation of condensation heat transfer in scaled-down small modular reactor applications, Part 1: Pure steam. Exp. Comput. Multiph. Flow 4, 409–423 (2022). https://doi.org/10.1007/s42757-021-0115-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-021-0115-5

Keywords

Navigation